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Much is due to those who first broke the way to knowledge,
and left only to their successors the task of smoothing it.

Samuel Johnson

Preface

Why should anybody still practice celestial navigation in the era of electronics and GPS? One might as well ask why
some photographers  still  develop black-and-white photos in their darkroom instead of using a digital  camera.  The
answer would be the same: because it  is a noble art, and because it is rewarding. No doubt, a GPS navigator is a
powerful  tool, but using it  becomes routine very soon. In contrast,  celestial  navigation is an intellectual  challenge.
Finding your geographic position by means of astronomical observations requires knowledge, skillfulness, and critical
judgment. In other words, you have to use your brains. Everyone who ever reduced a sight knows the thrill I am talking
about. The way is the goal.

It took centuries and generations of navigators, astronomers, geographers, mathematicians, and instrument makers to
develop the art and science of celestial navigation to its present level, and the knowledge thus accumulated is a treasure
that should be preserved. Moreover, celestial navigation gives us an insight into scientific thinking and creativeness in
the pre-electronic age. Last but not least, celestial navigation may be a highly appreciated alternative if a GPS receiver
happens to fail.

When I read my first  book on navigation many years  ago,  the chapter  on celestial  navigation with its  fascinating
diagrams and formulas immediately caught my particular interest although I was a little intimidated by its complexity at
first. As I became more advanced, I realized that celestial navigation is not nearly as difficult as it seems to be at first
glance. Studying the literature, I found that many books, although packed with information, are more confusing than
enlightening, probably because most of them have been written by experts and for experts. On the other hand, many
publications written for beginners are designed like cookbooks, i. e., they contain step-by-step instructions but avoid
much of the theory. In my opinion, one can not  really  comprehend celestial  navigation and enjoy the beauty of it
without knowing the mathematical background.

Since nothing really satisfied my requirements, I decided to write a compact manual for my personal use which had to
include the most important definitions, formulas, diagrams, and procedures. As time went by, the project gained its own
momentum, the text grew in size, and I started wondering if it might not be of interest to others as well. I contacted a
few scientific publishing houses, but they informed me politely that they considered my work as dispensable (“Who is
going to read this!”). I had forgotten that scientific publishing houses are run by marketing people, not by scientists.
Around the same time, I became interested in the internet, and I quickly found that it is the ideal medium to share one's
knowledge with others. Consequently, I set up my own web site to present my e-book to the public.

The style of my work may differ from other books on this subject. This is probably due to my different perspective.
When I started the project, I was a newcomer to the world of navigation, but I had a background in natural sciences and
in scientific writing. From the very beginning, it has been my goal to provide accurate information in a structured and
comprehensible form. The reader may judge whether this attempt has been successful.

More people than I expected are interested in celestial  navigation, and I would like to thank my readers for  their
encouraging comments and suggestions. However, due to the increasing volume of correspondence, I am no longer able
to answer individual questions or to provide individual support. Unfortunately, I have still a few other things to do, e. g.,
working for a living. Nonetheless, I keep working on this publication at leisure, and I am still grateful for suggestions
and error reports.

This publication is released under the terms and conditions of the GNU Free Documentation License. A copy of the
latter is included.
                                                                                                                       
                                                                                                                            March 15th, 2019

                                                                                                                            Henning Umland

Web site:

https://celnav.de
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Chapter 1

The Basics of Celestial Navigation

Celestial navigation, also called astronomical navigation, is the art and science of finding one's own geographic
position through astronomical observations, mostly by measuring altitudes of celestial bodies – Sun, Moon, planets,
or stars. 

An observer watching the night sky without knowing anything about geography and astronomy might spontaneously
get the impression of being on a horizontal  plane located at the center of a huge hollow sphere with the celestial
bodies attached to its inner surface. This naive concept of a spherical universe has probably been in existence since
the  beginning  of  mankind.  Later,  astronomers  of  the  antiquity  (Ptolemy et  al.)  developed  it  to  a  high  degree  of
perfection.  Still  today,  spherical  astronomy is  fundamental  to  celestial  navigation  since  the  navigator,  like  the
astronomers of old, measures apparent positions of bodies in the sky without knowing their actual positions in space.

The apparent position of a body in the sky is defined by the horizon system of coordinates which is an example of a
spherical coordinate system. In this system, an imaginary (!) observer is located at the center of the celestial sphere,
a  hollow  sphere  of  infinite  diameter, which  is  divided  into  two  hemispheres  by  the  plane  of  the  celestial  (or
geocentric) horizon (Fig. 1-1). The center of the celestial sphere coincides with the center of the Earth which is also
assumed to be a sphere. The first coordinate of the observed body is its geocentric altitude, H. H is the vertical angle
between the plane of the celestial horizon and a straight line extending from the center of the celestial sphere to the
body. H is measured  from 0° through +90° above the horizon  and from 0° through  -90° below the horizon.  The
geocentric zenith distance, z, is the corresponding angular distance between the body and the zenith, an imaginary
point vertically overhead. The zenith distance is measured from 0° through 180°. H and z are complementary angles
(H + z = 90°). The point opposite to the zenith on the celestial sphere is called nadir (H = -90°, z = 180°). H and z
are also arcs of the vertical circle going through zenith, nadir, and the observed body. The second coordinate of the
body, the geocentric true azimuth, AzN, is the horizontal direction of the body with respect to the geographic north
point on the celestial horizon, measured clockwise from 0°(N) through 360°. The geographic north point is the point
where the vertical half circle going from the zenith through the celestial north pole to the nadir intersects the horizon
(see chapter 3). The third coordinate of the body, its distance from the center of the celestial sphere, is not measured.

In reality, the observer is not located on the plane of the celestial horizon but on or above the surface of the Earth .
The imaginary horizontal plane passing through the observer's eye is called sensible (or astronomical) horizon (Fig.
1-2).
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The latter merges into the geoidal horizon, a plane tangent to the Earth at the observer's position, when the observer's
eye is at sea level. The planes of celestial, geoidal, and sensible horizon are parallel to each other and perpendicular
to the local direction of gravity which defines the positions of zenith and nadir on the celestial sphere.

Since sensible and geoidal horizon are relatively close to each other (compared with the radius of the Earth), they can
be considered as identical under most practical conditions. None of the above fictitious horizons coincides with the
visible horizon, the line where the Earth's surface and the sky appear to meet.

Usually,  the trigonometric  calculations of celestial  navigation are based on the  geocentric  altitudes (or geocentric
zenith distances) of bodies. Since it is not possible to measure the geocentric altitude of a body directly, it has to be
derived from its altitude with respect to the visible or sensible horizon (altitude corrections, chapter 2).

The altitude of a body with respect to the visible sea horizon is usually measured with a marine sextant. Measuring
altitudes with respect  to the (invisible) sensible horizon requires an instrument with an  artificial  horizon, e. g., a
theodolite or a bubble sextant (chapter 2). An artificial horizon is a device that indicates a plane perpendicular to the
local direction of gravity, for example by means of a spirit level or a pendulum.

Geocentric  altitude  and zenith  distance  of a celestial  body are  determined  by the distance  between the terrestrial
observer and the  geographic position of the body,  GP.  GP is the point where a straight line extending from the
center of the Earth, C, to the celestial body intersects the Earth's surface (Fig. 1-3).

A body is in the zenith (H = 90°, z = 0°) when GP is identical with the observer's position. A terrestrial (surface-
bound) observer moving away from GP will experience that the geocentric zenith distanze of the body varies in direct
proportion with the distance (measured along the surface) between himself and GP. The geocentric altitude of the
body decreases accordingly. The body is on the celestial horizon (H = 0°, z = 90°) when the observer is one quarter of
the  circumference  of the  Earth  away from GP. As soon as  the  observer  moves farther  away from GP, the  body
disappears below the horizon.

At a  given  instant,  there  is  an infinite  number  of terrestrial  positions from which  the  same altitude  of a  body is
measured (unless the body is in the zenith).  These positions are equidistant  from GP and form a  circle  of equal
altitude on the Earth's surface (Fig. 1-4).
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The great circle distance (chapter 3) of the observer from GP, r, is obtained through the following formula:

One nautical mile (1 nm = 1.852 km) is the great circle distance of one minute of arc on the surface of the Earth. The
mean perimeter of the Earth is 40031.6 km.

As shown in Fig. 1-4, light rays originating from a distant object (fixed star) are virtually parallel to each other when
they  arrive  at  the  Earth.  Therefore,  the  altitude  of  such  an  object  with  respect  to  the  sensible  horizon,  called
topocentric altitude, equals its geocentric altitude. In contrast, light rays coming from a relatively close body (Moon,
Sun,  planets)  diverge  significantly.  This  results  in  a  measurable  difference  between  topocentric  and  geocentric
altitude, called parallax in altitude (chapter 2). The effect is greatest when observing the Moon, the body closest to
the Earth. 

The true azimuth of a body depends on the observer's position on the circle of equal altitude and can assume any
value between 0° and 360°. Usually, the navigator is not equipped to measure the azimuth of a body with a precision
meeting the requirements of celestial navigation (a compass bearing is too imprecise). However, there are methods to
calculate the azimuth of a body with respect to the observer's actual or assumed position (chapter 4). 

Whenever we measure the altitude or zenith distance of a celestial body, we have already gained some information
about our own geographic position because we know we are somewhere on a circle of equal altitude defined by the
center, GP (the geographic position of the body), and the great circle radius, r. Of course, the information available so
far  is still  incomplete  because  we could be anywhere  on the circle  of equal  altitude  which comprises  an infinite
number of possible positions and is therefore also referred to as a circle of position (chapter 4). 

We extend our thought experiment and observe a second body in addition to the first one. Logically, we are on two
circles of equal altitude now. Both circles overlap, intersecting each other at two points on the Earth's surface. One of
these two points of intersection is our own position (Fig. 1-5a). Theoretically, both circles could be tangent to each
other. This case, however, is unlikely. Moreover, it is undesirable and has to be avoided (chapter 16).

In principle, it is not possible for the observer to know which point of intersection – Pos. 1 or Pos. 2 – is identical
with his actual position unless he has additional  information, e. g., a fair estimate of his position, or the  compass
bearing (approximate azimuth) of at least one of the bodies. The problem of ambiguity does not occur when three
bodies are observed because there is only one point where all three circles of equal altitude intersect (Fig. 1-5b). 

Theoretically,  the observer could find his position by plotting the circles of equal altitude on a globe. Indeed, this
method has been tried in the past but turned out to be impractical because precise measurements require a very big
globe. Plotting circles of equal altitude on a map is possible if their radii are small  enough. This usually requires
observed altitudes of almost 90°. The method is rarely used since such altitudes are not easy to measure.  In most
cases, circles of equal altitude have diameters of several thousand nautical miles and do not fit on nautical  charts.
Further, plotting circles of such dimensions is very difficult due to geometric distortions caused by the respective map
projection (chapter 13).

As a rule, the navigator has (and should have!) at least a rough idea of his position. It is therefore not required to plot
a complete  circle  of equal  altitude.  In most  cases  only a short  arc  of the circle  in the  vicinity  of the  observer's
estimated position is of interest.
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If the curvature of the arc is negligible, depending on the radius of the circle and the map scale, it will suffice to plot
a straight line (a secant or a tangent of the circle of equal altitude) instead of the arc. Such a line is called a line of
position or position line.

In the 19th century, navigators developed very convenient mathematical and graphic methods for the construction of
position lines on nautical charts. The point of intersection of at least two suitable position lines marks the observer's
position. These methods, which are considered as the beginning of modern celestial navigation, will be explained in
detail later.

In summary, finding one's geographic position by astronomical observations includes three basic steps:

1. Measuring the altitudes or zenith distances of two or more celestial bodies (chapter 2).

2. Finding the geographic position of each body at the instant of its observation by means of the Nautical

    Almanac or a suitable software almanac  (chapter 3).

3. Deriving one's own position from the above data (chapter 4&5).
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Chapter 2

Altitude Measurement

In principle,  altitudes  and  zenith  distances  are  equally  suitable  for  navigational  calculations.  Traditionally,  most
formulas are based upon altitudes since these are easily measured using the visible sea horizon as a natural reference
line. Direct measurement of the zenith distance requires an instrument with an artificial horizon, e. g., a pendulum or
spirit level indicating the local direction of gravity (perpendicular to the plane of the sensible horizon) since a visible
reference point in the sky does not exist.

Instruments

A  marine sextant consists of a  system of two mirrors and a telescope  mounted  on a sector-shaped metal  frame
(usually brass or aluminium alloy). Sextants with a plastic frame are also available. A schematic illustration of the
optical components is given in Fig. 2-1. The horizon glass is a half-silvered mirror whose plane is perpendicular to
the plane of the frame. The index mirror, the plane of which is also perpendicular to the frame, is mounted on the so-
called index arm rotatable on a pivot perpendicular to the frame. The optical axis of the telescope is parallel to the
frame and passes obliquely through the horizon glass. During an observation, the instrument frame is held upright,
and  the  visible  sea  horizon  is  sighted  through the  telescope  and  horizon  glass.  A light  ray  originating  from the
observed body is first reflected by the index mirror and then by the back surface of the horizon glass before entering
the telescope. By slowly rotating the index mirror on the pivot the superimposed image of the body is aligned with
the image of the horizon line. The corresponding altitude, which is twice the angle formed by the planes of horizon
glass and index mirror, can be read from the graduated limb, the lower, arc-shaped part of the sextant frame ( Fig. 2-
2). Detailed information on design, usage, and maintenance of sextants is given in [3] (see appendix). 

                       Fig. 2-2             

On land, where the horizon is too irregular to be used as a reference line, altitudes have to be measured by means of
instruments with an artificial horizon. 
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A bubble attachment is a special sextant telescope containing an internal artificial horizon in the form of a small
spirit level the bubble of which (replacing the visible horizon) is superimposed on the image of the celestial body.
Bubble attachments are expensive (almost the price  of a sextant)  and not very accurate  because they require the
sextant to be held absolutely still during an observation, which is rather difficult to manage. A sextant equipped with
a bubble attachment is referred to as a  bubble sextant. Special bubble sextants were used for air navigation before
electronic navigation systems became standard equipment.

On land, a pan filled with water or, preferably, a more viscous liquid, e. g., glycerol, can be utilized as an external
artificial horizon. As a result of gravity, the surface of the liquid forms a perfectly horizontal mirror unless distorted
by movements or wind. The vertical angular distance between a body and its mirror image, measured with a marine
sextant,  is twice the altitude of the body.  This very accurate  method is the perfect  choice for exercising celestial
navigation  in  a  backyard.  Fig.  2-3 shows a  professional  form  of  an  external  artificial  horizon.  It  consists  of  a
horizontal mirror (polished black glass) attached to a metal frame which is supported by three leg screws. Prior to an
observation, the screws have to be adjusted with the aid of one or two detachable high-precision spirit levels until the
mirror is exactly horizontal in every direction.

              Fig. 2-3         

                           

             Fig. 2-4      

A theodolite (Fig. 2-4) is basically a telescopic sight which can be rotated about a vertical and a horizontal axis. The
angle  of  elevation  (altitude)  is  read  from the  graduated  vertical  circle,  the  horizontal  direction  is  read  from the
horizontal circle. The specimen shown above has vernier scales and is accurate to approx. 1'.
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The  vertical  axis  of  the  instrument  is  aligned  with  the  direction  of  gravity  by  means  of  a  spirit  level  (artificial
horizon)  before  starting  the  observations.  Theodolites  are  primarily  used  for  surveying,  but  they  are  excellent
navigation instruments as well. Some models can resolve angles smaller than 0.1' which is not achieved even with the
best marine sextants. A theodolite is mounted on a tripod which has to rest on solid ground. Therefore, it is restricted
to land navigation. Mechanical  theodolites traditionally measure zenith distances. Electronic models can optionally
measure altitudes. Most mechanical theodolites measure angles in gradians instead of degrees (100 gradians = 90°).

When viewing the Sun through an optical instrument, a proper shade glass must be used, otherwise the retina might
suffer permanent damage! The sextant shown in Fig. 2-2 has two sets of shade glasses (gray filters) attached to the
frame  which  can  be  inserted  into  the  respective  optical  path.  Detachable  shade  glasses  are  available  for  most
theodolites.

Altitude corrections

Any altitude  measured  with  a  sextant  or  theodolite  contains  errors.  Altitude  corrections  are  necessary  to
eliminate systematic altitude errors and to reduce the topocentric altitude of a body to the geocentric altitude
(chapter 1). Altitude corrections do not remove random observation errors. 

Index error (IE)

A sextant or theodolite may display a constant error (index error, IE) which has to be subtracted from every reading
before the latter can be used for further calculations. The error is positive if the angle displayed by the instrument is
greater than the actual  angle and negative if the displayed angle is smaller.  Errors which vary with the displayed
angle  require  the  use  of  an  individual  correction  table  if  the  error  can  not  be  eliminated  by  overhauling  the
instrument.

The sextant altitude, Hs, is the altitude as indicated by the sextant before any corrections have been applied. 

When using an external artificial horizon, H1 (not Hs!) has to be divided by two. 

A theodolite measuring the zenith distance, z,  requires the following formula to obtain H1:

Dip of horizon

If the Earth's surface were an infinite plane, visible and sensible horizon would be identical. In reality, the visible sea
horizon  appears  several  arcminutes  below  the  sensible  horizon  which  is  the  result  of  two  contrary  effects,  the
curvature of the Earth's surface and atmospheric refraction.  The  geometrical  horizon is a flat  cone formed by an
infinite  number  of  straight  lines  tangent  to  the  Earth  and  converging  at  the  observer's  eye.  Since  atmospheric
refraction bends light rays passing along the Earth's surface toward the Earth,  all points on the geometric horizon
appear to be elevated, and thus form the visible horizon. Visible and geometrical horizon would be the same if the
Earth had no atmosphere (Fig. 2-5).

The vertical  angular  distance of the sensible horizon from the visible horizon is called  dip (of horizon) and is a
function  of the  height of eye,  HE,  the vertical  distance  of the  observer's  eye  from the sea surface  (the distance
between sensible and geoidal horizon):
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1st correction: H 1 = Hs− IE

H 1 = 90 ° −  z− IE 

Dip [' ] ≈ 1.76⋅ HE [m ] ≈ 0.97⋅ HE [ ft ]



The above formula is empirical  and includes the effects of the curvature of the Earth's surface and of atmospheric
refraction*.  The influence of the height of eye should not be underestimated. Increasing HE from 2 m to 4 m, for
example, causes the dip to change by approx. 1 arcminute.

*At sea, the dip of horizon can be obtained directly by measuring the angular distance between the visible horizon in front of the observer and
behind the observer through the zenith. Subtracting 180° from the angle thus measured and dividing the resulting angle by two yields the dip of
horizon. This very accurate method can not be accomplished with a sextant but requires a special instrument (prismatic reflecting circle) which is able
to measure angles greater than 180°.

The correction for the dip of horizon has to be omitted (Dip = 0) if any kind of an artificial horizon is used since
the latter is solely controlled by gravity and thus indicates the plane of the sensible horizon (perpendicular to
the vector of gravity).

The altitude obtained after applying corrections for index error and dip is also referred to as apparent altitude, Ha.

Atmospheric refraction

A light ray coming from a celestial body is slightly deflected toward the Earth when passing obliquely through the
atmosphere. This phenomenon is called refraction, and occurs always when light enters matter of different density at
an angle smaller than 90°. Since the eye is not able to detect the curvature of the light ray, the body appears to be on
a straight line tangent to the light ray at the observer's eye, and thus appears to be higher in the sky. R is the vertical
angular distance between apparent and true position of the body measured at the observer's eye (Fig. 2-6).

Atmospheric refraction is a function of Ha (= H2). Atmospheric standard refraction, R0, is zero at 90° altitude and

increases progressively to approx. 34' as the apparent altitude approaches 0°:

Ha [°] 0 1 2 5 10 20 30 40 50 60 70 80 90

R0 ['] ~34 ~24 ~18 9.9 5.3 2.6 1.7 1.2 0.8 0.6 0.4 0.2 0.0 

There  are  several  formulas  to  calculate  R0. Smart's formula  yields  very  accurate  results  from  15°  through  90°

apparent altitude [2,9]:

The constants used here are not exactly those given by  Smart but have been slightly modified to match the results
(within  ±10-4  ʼ) obtained with  Saastamoinen's highly accurate formula (see below) under the following conditions:
T = 283.15 K, p = 1010 hPa, relative air humidity = 75%. For the purpose of marine navigation, Smart's formula can
be used with apparent  altitudes down to as low as 7° where  the error reaches  approx.  -0.1ʼ.  Below 7°,  the error
increases rapidly and results become useless.

For altitudes between 0° and 15°, the following formula is suggested [10]. H2 is measured in degrees:
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R0[ ' ] =
34.133+4.197⋅H 2+0.00428⋅H 2

2

1+0.505⋅H 2+0.0845⋅H 2
2

2nd correction: H 2 = H 1−Dip

R0[ ' ] =
0.96474
tan H2

−
0.00113
tan3 H 2

Ha = H 2



A rather simple formula including the whole range of apparent altitudes from 0° through 90° was found by Bennett:

Bennett's formula is sufficiently accurate for marine navigation. The maximum systematic error, measured at approx.
12° apparent altitude, is smaller than 0.1ʼ [2].

Atmospheric refraction is influenced by atmospheric pressure, p, air temperature, T, and, to a much lesser degree, by
relative air humidity. Therefore the standard refraction, R0, has to be multiplied with a correction factor, f, to obtain
the actual refraction for a given combination of pressure and temperature.

Pressure and temperature are measured at the observer's position at the time of observation. The pressure must not be
reduced to sea level when observing from an elevated position. By definition, standard conditions (f = 1) for marine
navigation are  p = 1010 hPa (29.83 in Hg) and  T = 283.15 K (10°C,  50°F)*. The influence  of air  humidity on
atmospheric refraction is usually ignored. Even the correction for atmospheric pressure and temperature is sometimes
omitted (f = 1) since the resulting error is often tolerable.

* These are different from standard conditions commonly used in chemistry and physics (p = 1013.25 hPa, T = 273.15 K).

Saastamoinen's refraction formula [10] includes corrections for temperature,  atmospheric pressure,  and relative air
humidity:

pW is the partial pressure of water vapor in the atmosphere [10]. It is a function of relative air humidity, AH, and
absolute temperature, T:

Saastamoinen's formula assumes the observer to be at sea level and is most accurate at apparent altitudes greater than
20°. Note that in contrast to the aforementioned refraction formulas, results are measured in arcseconds here. 

The common refraction formulas refer to a fictitious standard atmosphere with an average density gradient.
The actual refraction may differ significantly from the calculated one if anomalous atmospheric conditions are
present (temperature inversion, mirage effects, etc.). The influence of atmospheric anomalies increases strongly
with  decreasing  altitude.  Particularly  refraction  below  ca.  5°  apparent  altitude  may  become  erratic,  and
calculated or tabulated values in this range should not be blindly relied on. It should be mentioned that the dip
of  horizon,  too,  is  influenced  by  atmospheric  refraction  and  may  become  unpredictable  under  certain
meteorological conditions.

H3 represents the topocentric altitude of the body, i. e., the altitude with respect to the sensible horizon.

Parallax

The trigonometric calculations of celestial navigation are based upon geocentric altitudes. Fig. 2-7 illustrates that the
geocentric altitude of an object, H4, is always greater than its topocentric altitude, H3. The difference H4-H3 is called

parallax in altitude,  P. P decreases as the distance between object and Earth increases. Accordingly, the effect  is
greatest when observing the Moon since the latter is the object nearest to the Earth. At the other extreme, P is too
small to be measured when observing fixed stars (see chapter 1, Fig. 1-4). To be precise, the observed parallax refers
to the sensible, not to the geoidal  horizon.
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R0[ ' ] =
1

tan(H 2 [° ] +
7.31

H2[° ] + 4.4 )

3rd correction: H 3 = H 2 − R ≈ H 2− R0

R = f⋅R0 f =
p [hPa ]

1010
⋅

283.15
T [K ]

=
p [hPa]

1010
⋅

283.15
273.15+T [°C ]

=
p[ in . Hg ]

29.83
⋅

510
460+T [° F]

R[ ' ' ] =

16.271⋅Q⋅(1+
0.0000394⋅Q

tan2 H2
)

tan H 2

− 0.0000749⋅p[hPa]⋅(
1

tan H2

−
1

tan3 H 2
)

Q =
p[hPa] − 0.156⋅pW [hPa ]

T [K ]

pW [hPa] = 0.01⋅AH [% ]⋅(
T [K ]

247.1 )
18.36



However, since the height of eye is by several magnitudes smaller than the radius of the Earth, the resulting error is
usually not significant.

The parallax (in altitude) of a body being on the geoidal horizon is called  horizontal parallax,  HP (Fig. 2-7). The
horizontal  parallax  of  the  Sun  is  approx.  0.15'.  Current  values  for  the  HP  of  the  Moon  (approx.  1°)  and  the
navigational planets are given in the Nautical Almanac [12] and similar publications, e.g., [13]. Tabulated values for
HP refer  to  the  equatorial  radius  of  the  Earth  (equatorial  horizontal  parallax,  see  chapter  9).  P is  a  function  of
topocentric altitude and horizontal parallax of a body.*  It has to be added to H3.

 

*To be exact, the parallax formula shown above is rigorous for the observation of the center of a body only. When observing the lower or upper limb,
there is a small error caused by the curvature of the body's surface which is usually negligible. The rigorous formula for the observation of the
respective limb is:

The factor k is the ratio of the radius of the observed body to the equatorial radius of the Earth (rEarth = 6378 km).

An additional correction for the oblateness of the Earth is recommended when observing the Moon (DP, see p. 2-8).

H4 represents the geocentric altitude of the body,  the altitude with respect to the celestial horizon.

Semidiameter

When observing Sun or Moon with a marine sextant or theodolite, it is not possible to locate the center of the body
precisely. It is therefore common practice to measure the altitude of the upper or lower limb of the body and add or
subtract the apparent semidiameter, SD. The latter is the angular distance of the respective limb from the center of
the body (Fig. 2-8).

Fig. 2-8 illustrates the topocentric semidiameter of a body. However, we need the geocentric SD, the SD measured
by a fictitious observer at the center the Earth,  because H4 is measured at the center the Earth (see  Fig. 2-4). The

geocentric semidiameters of Sun and Moon are given on the daily pages of the Nautical Almanac [12].
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P = arcsin sin HP⋅cos H 3 ≈ HP ⋅cos H 3

Lower limb: P = arcsin [sin HP⋅(cos H 3 + k ) ] − arcsin (k ⋅sin HP) ≈ HP⋅cosH 3

Upper limb: P = arcsin [sin HP⋅(cos H 3 − k ) ] + arcsin(k⋅sin HP ) ≈ HP⋅cos H 3

4th correction: H 4 = H 3  P



The geocentric SD of a body can be calculated from its tabulated horizontal parallax. This is of particular interest
when observing the Moon.

Although the semidiameters of the navigational  planets are not quite negligible (the SD of Venus can increase to
0.5'), the apparent centers of these bodies are usually observed, and no correction for SD is applied. With a strong
telescope, however, the limbs of  the brightest planets can be observed. In this case the correction for semidiameter
should be applied. Semidiameters of stars are much too small to be measured (SD = 0).

(lower limb: add SD, upper limb: subtract SD)

When using a bubble sextant, we observe the center of the body and skip the correction for semidiameter (SD = 0).

The altitude obtained after applying the above corrections is called observed altitude, Ho. The latter represents
the geocentric altitude of the center of the observed body.

 

Combined  corrections  for  semidiameter  and  parallax  (particularly  recommended  for  observations  of  the
Moon)

H3 can be reduced to the observed altitude in one step. In spite of its simplicity, the following formula is rigorous. It

includes the corrections for semidiameter and parallax in altitude (see Addendum at the end of this chapter):

(lower limb: add k, upper limb: subtract k)

Alternative procedure for semidiameter and parallax

Correcting  for  semidiameter  before correcting  for  parallax  is  also  possible.  In  this  case,  however,  we  have  to
calculate with the  topocentric semidiameter,  the semidiameter  of the respective body as seen from the observer's
position on the surface of the Earth (see  Fig. 2-8). With the exception of the Moon, the body nearest to the Earth,
there is no significant difference between topocentric and geocentric semidiameter.

The topocentric SD of the Moon is only marginally greater than the geocentric SD when the Moon is on the sensible
(geoidal)  horizon  but  increases  measurably  as  the  altitude  increases  because  of  the  decreasing  distance  between
observer and Moon. The distance is smallest (decreased by about the radius of the Earth) when the Moon is in the
zenith.  As  a  result,  the  topocentric  SD of  the  Moon  being  in  the  zenith  is  approximately  0.3'  greater  than  the
geocentric SD. This phenomenon is called augmentation (Fig. 2-9).
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5th correction: H 5 = H 4 ± SD geocentric

Ho = H 3  arcsin [sin HP ⋅cos H 3 ± k  ] ≈ H 3  HP ⋅cos H 3 ± k 

SDgeocentric = arcsin k ⋅sin HP  ≈ k ⋅ HP k Moon =
r Moon

r Earth

= 0.2725

Ho = H 5



The rigorous formula for the topocentric (augmented) semidiameter of the Moon is:

(observation of lower limb: add k, observation of upper limb: subtract k)

 
The approximate topocentric semidiameter of the Moon can be calculated with a simpler formula given by Meeus [2].
It refers to the center of the Moon but is still accurate enough for the purpose of  navigation (error < 1'') when applied
to the altitude of the upper or lower limb, respectively:

A very similar formula was proposed by Stark [14]:

Thus, the alternative fourth correction is:

(lower limb: add SD, upper limb: subtract SD)

H4,alt represents the topocentric altitude of the center of the Moon.

Using the parallax formula explained above, we calculate Palt from H4,alt:

Thus, the alternative fifth correction is:

Since the geocentric SD is easier to calculate than the topocentric SD, it is usually more convenient to correct for the
semidiameter in the last place or, better, to use the combined correction for parallax and semidiameter unless one has
to know the augmented SD of the Moon for special reasons.

The topocentric semidiameter of the Moon can also be calculated from the observed altitude (the geocentric altitude
of the center of the Moon), Ho:

Instead of Ho, the computed altitude, Hc, can be used (see chapter 4).

Correction for the oblateness of the Earth

The above formulas for parallax and semidiameter are rigorous for spherical bodies. In fact, the Earth is not exactly a
sphere  but  rather  resembles  an  oblate  spheroid,  a  sphere  flattened  at  the  poles  (chapter  9).  In  most  cases,  the
navigator will not notice the difference. However, when observing the Moon, the flattening of the Earth may cause a
small  but measurable error (up to  ±0.2')  in the parallax,  depending on the observer's position. Therefore,  a small
correction,  ΔP, should be added to P if  higher  accuracy  is required  [12].  When using the  combined  formula  for
semidiameter and parallax, ΔP is added to Ho.
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SD topocentric = arctan
k

[ √
1

sin2 HP
− (cos H 3 ± k )

2 ] − sin H 3

SDtopocentric ≈ k ⋅ HP⋅1  sin HP ⋅sin H 3

SDtopocentric ≈
k ⋅ HP

1 − sin HP ⋅sin H 3

5th correction (alternative): H5, alt = H 4,alt  Palt

Ho = H 5, alt

SD topocentric = arcsin
k

√1 +
1

sin2 HP
− 2⋅

sin Ho
sin HP

Palt = arcsin sin HP ⋅cos H 4,alt  ≈ HP ⋅cos H 4, alt

4th correction (alt.): H 4,alt. = H 3 ± SD topocentric



* Replace H with H3 or H4,alt, respectively.

Lat is the observer's estimated or assumed latitude (chapter 4). AzN, the true azimuth of the Moon, is either measured

with a magnetic compass (compass bearing) or calculated using the azimuth formulas given in chapter 4.

Phase correction (Venus and Mars)

Since Venus and Mars show phases similar to the Moon, their apparent center may differ somewhat from the actual
center.  The coordinates of both planets tabulated in the  Nautical Almanac [12] include the phase correction, i. e.,
they refer to the apparent center. The phase correction for Jupiter and Saturn is too small to be significant.

In contrast, coordinates calculated with Interactive Computer Ephemeris refer to the actual center. In this case, the
upper or lower limb of the respective planet should be observed if the magnification of the telescope is sufficient, and
the correction for semidiameter should be applied.

Altitude correction tables

The  Nautical Almanac provides sextant altitude correction tables for Sun, planets, stars (pages A2 – A4), and the
Moon (pages xxxiv – xxxv),  which can be used instead of the above formulas if small  errors (< 1')  are tolerable
(among other things, the tables cause additional rounding errors). 

Other corrections

Sextants with an artificial horizon can exhibit additional errors caused by acceleration forces acting on the bubble or
pendulum  and  preventing  it  from  aligning  itself  with  the  direction  of  gravity.  Such  acceleration  forces  can  be
accidental (vessel movements) or systematic (coriolis force). The coriolis force is important to air navigation (high
speed!) and requires a special correction formula.

In the vicinity of mountains, ore deposits, and other local irregularities of the Earth's crust, the vector of gravity may
slightly differ from the normal to the reference ellipsoid, resulting in altitude errors that are difficult to predict ( local
deflection of the vertical, chapter 9). Thus, the astronomical position of an observer (resulting from astronomical
observations) may be slightly different from his geographic (geodetic) position with respect to a reference ellipsoid
(GPS position). The difference is usually small at sea and may be ignored there. On land, particularly in the vicinity
of mountain ranges,  position errors of up to 50 arcseconds (Alps) or even 100 arcseconds (Himalaya)  have been
found. Thus, surveying by astronomical observations requires local corrections for latitude and longitude, depending
on the respective reference ellipsoid.

Addendum

The following is a detailed explanation of the formula used to reduce the topocentric altitude of the lower limb of the
Moon to the geocentric altitude of the Moon's center in one step (Fig. 2-10). H is the altitude corrected for index
error, dip, and atmospheric refraction (= H3). The topocentric altitude of the upper limb is reduced in a similar way
(see below).
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Pimproved = P + Δ P

Δ P ≈ f ⋅HP⋅ (sin (2⋅Lat )⋅cos AzN ⋅sin H *
− sin2 Lat ⋅cos H * ) f =

1
298.257



Fig. 2-10

First, we apply the law of sines for plane triangles:

With  sin HP =
r E

d EM

, k =
rM

r E

, and k⋅sin HP =
rM

d EM

, we get

When observing the upper limb of the Moon, we get

 and, accordingly, 
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sin(Hgeo−H )

rE +
rM

cosH

=
sin(H +90 °)

d EM

=
cos H
d EM

sin(H geo−H ) =

(rE +
rM

cos H
)⋅cos H

dEM

=
rE⋅cos H

dEM

+
rM

d EM

sin(H geo−H ) = sin HP⋅(cos H + k )

Hgeo ≈ H + HP ⋅(cos H + k )

sin(H geo−H )

rE −
r M

cos H

=
cos H
dEM

sin(H geo−H ) = sin HP⋅(cos H − k)

α = H geo− H



Chapter 3
Geographic Position and Time

Geographic and Astronomical Terms

In celestial navigation, the Earth is regarded as a sphere. This is an approximation only, but the errors caused by the
flattening of the Earth are usually negligible (see chapter 9). A circle on the surface of the Earth whose plane passes
through the Earth's center is referred to as a great circle. In contrast, a small circle is a circle on the surface of the
Earth the plane of which does not pass through the Earth's center.  The equator is the only great circle the plane of
which is perpendicular to the  polar axis, the rotation axis of the Earth. Further, the equator is the only  parallel of
latitude being a great circle. All other parallels of latitude are small circles whose planes are parallel to the plane of
the equator.  A meridian is a great circle going through the  geographic poles, the two points where the polar axis
intersects the Earth's surface. The upper branch of a meridian is the half from pole to pole passing through a given
point, for example the observer's position. The lower branch is the opposite half. The meridian passing through the
observer's position is called  local meridian. The  Greenwich meridian, the meridian passing through the center of
the  transit  instrument  at  the  Royal  Greenwich  Observatory,  was  adopted  as  the  prime  meridian at  the
International Meridian Conference in 1884. Its upper branch (0°) is the reference for measuring longitudes (0°...
+180° to the east and 0°...–180° to the west), its lower branch (±180°) is the basis for the International Date Line
(Fig. 3-1). 

Each point of the Earth's  surface  has an imaginary counterpart  on the surface of the celestial  sphere obtained by
central projection. The projected image of the observer's position, for example, is the zenith. Accordingly, there are
two  celestial  poles,  the  celestial  equator,  celestial  meridians,  etc.  The local  celestial  meridian is also a  vertical
circle, i. e., a great circle on the celestial sphere passing through the observer's zenith and nadir. Passing throught the
celestial poles, the local celestial meridian marks the  north point and the  south point on the horizon. The vertical
circle perpendicular to the local meridian, called prime vertical, marks the west point and east point on the horizon.

The Equatorial System of Coordinates

The geographic position of a celestial body,  GP, is defined by the equatorial system of coordinates, a spherical
coordinate system the origin of which is at the center of the Earth (Fig. 3-2).

The  Greenwich hour angle of a body,  GHA, is the angular distance of the upper branch of the meridian passing
through GP from the upper branch of the Greenwich meridian (Lon = 0°), measured  westward from 0° through
360°. The meridian going through GP (as well as its projection on the celestial sphere) is called hour circle.
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The  Declination of a body,  Dec, is the angular distance of GP from the plane of the equator, measured northward
through +90° or southward through –90°. GHA and Dec are  geocentric coordinates (measured at the center of the
Earth). Although widely used, the term “geographic position“ is misleading when applied to a celestial body since it
actually  describes  a  geocentric  position in  this  case  (see  chapter  9).  GHA and Dec are  equivalent  to  geocentric
longitude  and  latitude of  a  position  with  the  exception  that  longitudes  are  measured  westward  from  the
Greenwich meridian through −180° and eastward through +180°.

Since the Greenwich meridian rotates with the Earth from west to east,  whereas each hour circle  remains
linked with the almost stationary position of the respective body in the sky, the Greenwich hour angles of all
celestial bodies increase by approx. 15° per hour (360° in 24 hours).

In contrast to stars (15° 2.46' /h), the GHAs of Sun, Moon, and planets increase at slightly different (and variable)
rates. This is caused by the revolution of the planets (including the Earth) around the Sun and by the revolution of the
Moon around the Earth, resulting in additional apparent motions of these bodies in the sky. For several applications it
is useful to measure the angular distance between the hour circle of a celestial body and the hour circle of a reference
point  in the sky instead of the Greenwich meridian because the angle thus obtained is independent  of the Earth's
rotation. The sidereal hour angle, SHA, of a given body is the angular distance of its hour circle (upper branch) from
the  hour  circle  (upper  branch)  of  the  first  point  of  Aries  (also  called  vernal  equinox,  see  below), measured
westward from 0° through 360°. Thus, the GHA of a body is the sum of its sidereal hour angle and the GHA of the
first point of Aries, GHAAries:

(Subtract 360° if the resulting angle is greater than 360°.)

The angular distance of a celestial body eastward from the hour circle of the vernal equinox, measured in time units
(24h = 360°),  is called  right ascension,  RA.  The latter  is mostly used by astronomers  whereas navigators prefer
sidereal hour angles.

Fig. 3-3 illustrates the various hour angles on the plane of the equator as seen from the celestial  north pole (time
diagram).

Declinations are not affected by the rotation of the Earth. The declinations of Sun and planets change primarily due to
the obliquity of the ecliptic, the inclination of the Earth's equator to the ecliptic. The latter is the orbital plane of
the  Earth and  forms  a  great  circle  on  the  celestial  sphere.  The  declination  of  the  Sun,  for  example,  varies
periodically between ca. +23.5° (summer solstice) and ca. -23.5° (winter solstice) as shown in Fig. 3-4. 

The two points on the celestial  sphere where the great  circles of ecliptic  and celestial  equator intersect  are called
equinoxes. The term equinox is also used for the instants at which the apparent Sun, moving westward along the
ecliptic during the course of a year, crosses the celestial equator, approximately on March 21 and on September 23.
There is a vernal equinox (first point of Aries, vernal point) and an autumnal equinox.
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GHA = SHA + GHAAries

RA [h] = 24 h −
SHA [° ]

15
⇔ SHA [° ] = 360 ° − 15⋅ RA [h]



The former is the reference point for measuring sidereal hour angles (Fig. 3-5). At the instant of an equinox (Dec ≈
0°)*, day and night have roughly (!) the same length (12 h each), regardless of the observer's position (Lat.  aequae
noctes = equal nights).

*To be more precise, the equinoxes are defined as the instants at which the ecliptic longitude (λ) of the apparent Sun is either 0° (vernal equinox) or 180° (autumnal
equinox)  [10].  The  actual  declination  of  the  Sun  at  such  an  instant  may  slightly  differ  from  0°  since  the  Earth  is  not  always  exactly  on  the  mean  orbital  plane
(perturbations).

The declinations of the planets and the Moon are also influenced by the inclinations of their own orbits to the ecliptic.
The plane of the Moon's orbit, for example, is inclined to the ecliptic by approx. 5° and makes a tumbling movement
with a period of 18.6 years (Saros cycle). As a result, the declination of the Moon varies between approx. -28.5° and
+28.5° at the beginning and at the end of the Saros cycle, and between approx. -18.5° and +18.5° in the middle of the
Saros cycle.

Further, sidereal hour angles and declinations of all bodies change slowly due to the influence of the precession of
the Earth's polar axis. Precession is a slow, tumbling movement of the polar axis along the surface of an imaginary
double cone. One revolution lasts about 26000 years (Platonic year). As a result, the equinoxes move westward along
the celestial equator at a rate of approx. 50'' per year. Thus, the sidereal hour angle of each star decreases at about the
same rate. In addition, there is a small elliptical oscillation of the polar axis with a period of 18.6 years (compare with
the Saros cycle), called  nutation, which causes the equinoxes to travel along the celestial equator at a periodically
changing  rate.  Thus we have  to  distinguish between  the  ficticious  mean equinox of date and the  true  (current)
equinox of date (see time measurement). Accordingly, the declination of each body oscillates (nutation in obliquity).
The same applies to the rate of change of the sidereal hour angle and right ascension of each body (see below). Even
stars are not fixed in space but move individually, resulting in a slow drift of their respective declination and right
ascension (proper motion). Finally, the apparent positions of bodies are influenced by other factors, e. g., the finite
speed of light (light time, aberration), and annual parallax, the latter being caused by the Earth orbiting around the
Sun  [16]. The accurate prediction of geographic positions of celestial  bodies requires complicated algorithms. The
calculation of low-precision ephemerides of the Sun (sufficient for marine navigation) is described in chapter 15.

Time Measurement in Navigation and Astronomy

Since  the  Greenwich  hour  angle  of  any  celestial  body changes  rapidly,  many  tasks  of  celestial  navigation
require accurate time measurement, and the instant of each observation should be measured to the second if
possible. This is usually done by means of a chronometer and a stopwatch (chapter 17). The effects of time errors are
discussed in chapter 16. On the other hand, the Earth's rotation with respect to celestial bodies provides an important
basis for astronomical time measurement. Coordinates tabulated in the Nautical Almanac refer to Universal Time,
UT. UT has replaced Greenwich Mean Time, GMT, the traditional basis for civil time keeping. Conceptually, UT
(like GMT) is the hour angle of the fictitious mean Sun, expressed in hours (24h = 360°) with respect to the lower
branch of the Greenwich meridian (mean solar time, Fig. 3-6).
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UT is calculated with the following formula which refers to the upper branch of the Greewich meridian:

UT [h] =
GHAMean Sun [° ]

15
 12

(If UT is greater than 24 h, subtract 24 hours.)

By definition, the GHA of the mean Sun increases by exactly 15° per hour, completing a 360° cycle in 24 hours.
The unit for UT is 1 solar day, the time interval between two consecutive meridian transits of the mean Sun.

The rate  of change of the GHA of the  apparent (observable)  Sun varies  periodically  and is sometimes  slightly
greater, sometimes slightly smaller than 15°/h during the course of a year. This behavior is caused by the eccentricity
of the Earth's orbit and by the obliquity of the ecliptic. The time measured by the hour angle of the apparent Sun with
respect  to  the  lower  branch  of  the  Greenwich  meridian  is  called  Greenwich  Apparent  Time,  GAT.  A  sundial
located at the Greenwich meridian would indicate GAT. The difference between GAT and UT at a given instant is
called equation of time, EoT:

EoT varies periodically between approx.  −14 and +17 minutes (Fig. 3-7). Predicted values for EoT for each day of
the year (at 0:00 and 12:00 UT) are given in the Nautical Almanac (grey background indicates negative EoT). EoT is
needed when calculating times of sunrise and sunset, or determining a noon longitude (with the exception of using
the method described in chapter 6). Formulas for the calculation of EoT are given in chapter 15.

Fig. 3-7   

Plotting EoT versus the declination of the Sun yields a figure-8 shaped curve which is called analemma. This curve
is, for example, needed for the construction of certain types of sundials which compensate for EoT.  Fig. 3-8 shows
the analemma for the year 2000.

Fig. 3-8

3-4
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The hour angle of the mean Sun with respect  to the lower branch of the local  meridian (the upper branch going
through the observer's position) is called  Local Mean Time,  LMT. LMT and UT are linked through the following
formula:

The instant  of the mean Sun passing through the upper branch of the local  meridian is called  Local Mean Noon,
LMN.

A zone time is usually the Local Mean Time at a geographic longitude being a multiple of ±15°. Thus, zone times
differ by an integer number of hours (with few exceptions). In the US, for example, Eastern Standard Time (UT −5h)
is LMT at  −75° longitude,  Pacific  Standard  Time  (UT−8h)  is  LMT at  −120° longitude.  Central  European  Time
(UT+1h) is LMT at +15° longitude. Nowadays, zone times in civil life are no longer based upon UT but on UTC (see
below). Time zones are areas where civil life is controlled by an adopted zone time. The boundaries of existing time
zones have been established on various grounds (political, economical, geographical, or historical).

The hour angle of the apparent Sun with respect to the lower branch of the local meridian is called Local Apparent
Time, LAT:

The instant  of the apparent  Sun crossing the upper branch of the local  meridian is called  Local Apparent Noon,
LAN. 

Time measurement  by the Earth's  rotation does not necessarily  require the Sun as the reference  point  in the sky.
Greenwich Apparent Sidereal Time, GAST, is a time scale based upon the Greenwich hour angle (upper branch) of
the  true vernal equinox of date, GHAAries (see Fig. 3-3). Hourly values of  GHAAries are  tabulated in the Nautical
Almanac.

In the past, GAST has been measured by the Greenwich meridian transit of stars since GAST and the right ascension
of the observed star are numerically equal at the moment of meridian transit.

The Greenwich hour angle (measured in hours) of the imaginary mean vernal equinox of date (travelling along the
celestial  equator  at  a  constant  rate)  is called  Greenwich Mean Sidereal Time,  GMST.  The  difference  between
GAST and GMST at a given instant is called equation of the equinoxes, EQ, or nutation in right ascension. EQ can
be predicted precisely. It varies periodically within approx. ±1s.

Due  to  the  Earth's  revolution  around  the  Sun,  a  mean  sidereal  day  (the  time  interval  between  two  consecutive
meridian transits of the mean equinox) is slightly shorter than a mean solar day:

UT is no longer measured by the hour angle of the Sun but is calculated from GMST, to which it is linked through a
formula  [10].  Nowadays,  sidereal  time (and thus,  UT) is obtained by observation  of extragalactical  radio sources
(quasars)  which can  be regarded  as  rigidly fixed  to the imaginary  celestial  sphere  since  they do not  exhibit  any
measurable  proper  motion.  Their  apparent  diurnal  motions  are  measured  through  Very  Long  Baseline
Interferometry (VLBI). This technology, which involves a global network of observation stations, produces much
more accurate results than, e. g., the observation of any meridian transit.

By analogy with LMT and LAT, there is a  Local Mean Sidereal Time, LMST, and a  Local Apparent Sidereal
Time, LAST:

Solar time and sidereal time are both linked to the Earth's rotation. The Earth's rotation speed, however, decreases
slowly (tidal friction). Moreover,  it is subject to small fluctuations due to random movements of matter within the
Earth's body (magma) and on the surface (water, air). Therefore, neither of the two time scales is strictly linear. Many
applications in astronomy and physics, however,  do require a linear time scale.  One example is the calculation of
ephemerides since the motions of celestial bodies in space are independent of the Earth's rotation.

International Atomic Time, TAI, is the most accurate time standard presently available. It is obtained by statistical
analysis of data supplied by a world-wide network of several hundred atomic clocks. TAI forms the basis for other
important time scales.
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LMT [h] = UT [h] 
Lon [° ]

15

LAT [h] = GAT [h ]
Lon[° ]

15

GAST [h] =
GHAAries [° ]

15

EQ = GAST − GMST

24 h Mean Sidereal Time = 23h 56m 4.090524s Mean Solar Time

LMST [h] = GMST [h ]
Lon[° ]

15
LAST [h] = GAST [h] 

Lon [° ]

15



Civil life is mostly determined by Coordinated Universal Time, UTC (= Zulu Time, Z), which is the basis for time
signals broadcast  by radio stations, e. g., WWV. UTC is further available (2019) through the National Institute of
Standards and Technology,  NIST [14]. UTC is controlled by TAI. Due to the variable (in total decreasing) rotation
speed of the Earth, UT tends to lag behind UTC. This is deemed undesirable since the cycle of day and night is linked
to  UT,  not  to  UTC.  To  ensure  that  the  difference,  ΔUT,  remains  within  the  specified  range  of  ±0.9s,  UTC is
synchronized to UT by introducing leap seconds at certain dates (June 30, December 31) whenever ΔUT approaches
the upper or lower limit. Up to now (2019), only positive leap seconds in the form of minutes of 61 seconds each
have been introduced (retarding UTC).

N is the cumulative  number of leap seconds introduced since 1972 (N = 37 in 2019.0).  As a consequence  of the
occasional leap second, UTC is not a continuous time scale. Current and predicted values for ΔUT (= UT1–UTC) and
DUT1 (=  ΔUT rounded to the next 0.1s) are published weekly by the IERS Rapid Service (IERS Bulletin A) [15].
The IERS further gives prior notice of every upcoming insertion of a leap second (IERS Bulletin C). Note that UT is
generally used as a synonym for UT1 which is obtained by correcting UT0 for the small effect of polar motion [17].

GPS Time, GPST, and Terrestrial Time, TT (≈ Terrestrial Dynamical Time,  TDT), are continuous and linear
time scales derived from TAI:

TT has replaced Ephemeris Time, ET. The offset of 32.184 s with respect to TAI is necessary to ensure a seamless
continuation of ET. TT is widely used in astronomy (calculation of ephemerides) and space flight. The difference
between TT and UT is denoted as ΔT.

Fig. 3-9 shows the development of ΔT since January 1800. At the beginning of the year 2019, ΔT was +69.2s [15].

Fig. 3-9

ΔT is of  some  interest  to  the  navigator  since  computer  almanacs  require  UT  and TT (TDT)  as  time  arguments
(programs using only UT calculate on the basis of interpolated or extrapolated  ΔT values). Since ΔT is affected by
the earth’s rotation, a precise long-term prediction is not possible. Therefore, computer almanacs using only UT as
time argument will become less accurate in the long run. ΔT can be calculated with the following formula:

In addition to current UT1-UTC values (see above), the IERS Bulletin A includes values for TAI-UTC (= cumulative
number of leap seconds, N).

At present (2019) there is an ongoing discussion among scientists about the usefulness of leap seconds. Computer
operating systems (mostly running on UTC), for example, would be less prone to errors when linked to a continuous
time  scale.  One potential  error  source  with UTC,  for  example,  is the  creation  of  accurate  time  stamps for  files.
Another argument against UTC is that the drift of UT with respect to atomic time is so slow that its effect on civil life
will not become obvious in the foreseeable future.  Assuming that UT and UTC drift apart at an average rate of 1
second per year, it would take about 3600 years to reach a difference of 1 hour.
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UT = UTC + ΔUT UTC = TAI − N

GPST = TAI−19 s TT = TAI + 32.184 s

TT = UT + ΔT

ΔT = 32.184 s + N − ΔUT = 32.184 s + (TAI − UTC )− (UT 1 − UTC )



TAI

UTC

UT

GPST TT

Compare this with the effects of the 1-hour jumps from standard time to summer time (daylight saving time) and back
imposed by many governments. Up to now, no decision has been made. The practice of celestial navigation would
not be affected by an abolition of leap seconds since the calculation of ephemerides (RA, Dec) is based upon TT
whereas the Greenwich hour angle of a celestial body results from its right ascension and sidereal time at Greenwich
(the latter being measured by the Earth's rotation).

The formal interrelations between TAI and other time scales are summarized in Fig. 3-10.

       

            Fig. 3-10     

The GMT Problem

The term GMT has become ambiguous since it is often used as a synonym for UTC now. Moreover, astronomers used
to reckon GMT from the upper branch of the Greenwich meridian until 1925 (the time thus obtained is sometimes
called  Greenwich  Mean  Astronomical  Time,  GMAT).  Therefore,  the  term  GMT should  be  avoided  in  scientific
publications, except when used in a historical context.

The Nautical Almanac

Predicted values for GHA and Dec of Sun, Moon and the navigational  planets are tabulated for each integer hour
(UT)  of  a  calendar  year  on  the  daily  pages  of  the  Nautical  Almanac,  N.A.,  and  similar  publications  [12,  13].
GHAAries is tabulated in the same manner. 

Listing GHA and Dec of all 57 fixed stars used in navigation for each integer hour of the year would require too
much  space  in  a  book.  Therefore,  sidereal  hour  angles  are  tabulated  instead  of  Greenwich  hour  angles.  Since
declinations and sidereal hour angles of stars change only slowly, tabulated values for periods of 3 days are accurate
enough for celestial  navigation. GHA is obtained by adding the SHA of the respective star to the current value of
GHAAries. 

GHA and Dec for each second of the year are obtained using the interpolation tables at the end of the N.A. (printed
on tinted paper), as explained in the following directions.

1.
We note the exact time of observation (UT), determined with a chronometer and a stopwatch. If UT is not available,
we can use UTC. The resulting error is tolerable in most cases.

2.
We look up the day of observation in the N.A. (two pages cover a period of three days).

3.
We go to the nearest integer hour preceding the time of observation and note GHA and Dec of the observed body. In
case of a fixed star, we form the sum of GHA Aries and the SHA of the star, and note the tabulated declination. When
observing planets, we note the v and d factors given at the bottom of the appropriate column. For the Moon, we take v
and d for the nearest integer hour preceding the time of observation.
The quantity v is necessary to apply an additional correction to the following interpolation of the GHA of Moon and
planets. It is not required for stars. The Sun does not require a v factor since the correction has been incorporated in
the tabulated values for the Sun's GHA. 

The quantity  d, which is negligible for stars, is the rate of change of Dec, measured in arcminutes per hour. It is
needed for the interpolation of Dec. The sign of d is critical!

4.
We look up the minute of observation in the interpolation tables (1 page for each 2 minutes of the hour), go to the
second of observation, and note the increment from the respective column.
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–19s –N +32.184s

+ΔUT +ΔT



 
We enter  one of the three  columns to the right  of the increment  columns with the  v and  d factors  and note  the
corresponding corr(ection) values (v-corr and d-corr). 
The sign of d-corr depends on the trend of declination at the time of observation. It is positive if Dec at the integer
hour following the  observation  is greater  than Dec at  the integer  hour preceding the  observation.  Otherwise  it  is
negative. 

v -corr is negative for Venus. Otherwise, it is always positive.

5.
We form the sum of Dec and d-corr (if applicable).

6.
We form the sum of GHA (or GHA Aries and SHA in case of a star), increment, and v-corr (if applicable).
SHA values tabulated in the Nautical Almanac refer to the true vernal equinox of date.

Interactive Computer Ephemeris

Interactive Computer Ephemeris, ICE, is a computer almanac developed by the U.S. Naval Observatory (successor
of the  Floppy Almanac) in the 1980s. ICE is FREEWARE (no longer supported by USNO), compact, easy to use,
and provides a vast quantity of accurate astronomical data for a time span of almost 250 (!) years.

In spite of its archaic design and cumbersome handling (DOS program), ICE is still a useful tool for navigators and
amateur astronomers.

Among many other features, ICE calculates GHA and Dec for a given body and time as well as altitude and azimuth
of the body for an assumed position (see chapter 4) and, moreover, sextant altitude corrections. Since the navigation
data  are as accurate  as those tabulated  in the  Nautical  Almanac (error  ≦ 0.1'),  the program makes an adequate
alternative, although a printed almanac (and sight reduction tables) should be kept as a backup in case of a computer
failure. The following instructions refer to the final version (0.51). Only program features relevant to navigation are
explained. 

1. Installation
 
Copy the program files to a chosen directory on the hard drive, floppy disk, USB stick, or similar storage device.
ICE.EXE is the executable program file. 

2. Getting Started

DOS users: Change to the program directory and enter "ice" or "ICE ". Windows users can run ICE in a DOS box.
Linux users: Install the DOS emulator "DOSBox". Copy the ICE files to a directory of your choice in your personal
folder. ICE is started through the command “dosbox“, followed by a blank space and the path to the program file:

dosbox /home/<user name>/<program directory>/ICE.EXE   (Note that Linux is case-sensitive.)

After ICE has started, the main menu appears. Use the function keys F1 to F10 to navigate through the submenus.
The program is more or less self-explanatory. Go to the submenu INITIAL VALUES (F1). Follow the directions on
the screen to enter date and time of observation (F1), assumed latitude (F2), assumed longitude (F3), and your local
time zone (F6). Assumed latitude and longitude define your assumed position. Use the correct data format, as shown
on the screen (decimal format for latitude and longitude).

After entering the above data, press F7 to accept the values displayed. To change the default values permanently, edit
the file ice.dft with a text editor (after making a backup copy) and make the desired changes. Do not change the data
format. The numbers have to be in columns 21-40. To create an output file to store calculated data, go to the submenu
FILE OUTPUT (F2) and enter a chosen file name, e.g., OUTPUT.TXT.

3. Calculation of Navigational Data
 
From the main menu, go to the submenu NAVIGATION (F7). Enter the name of the body. The program displays
GHA and Dec of the body, GHA and Dec of the Sun (if visible), and GHA of the vernal equinox for the date and time
(UT) stored in INITIAL VALUES.

Hc (computed altitude) and Zn (true azimuth) mark the apparent position of the body as observed from the assumed
position. Approximate altitude corrections (refraction, SD, PA), based upon Hc, are also displayed (for lower limb of
body). The semidiameter of the Moon includes augmentation.
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The coordinates calculated for Venus and Mars do  not include the phase correction. Therefore,  the upper or lower
limb (if discernable) should be observed.

∆T is TT(TDT)-UT, the predicted difference between terrestrial time and UT for the given date. The ∆T value for
2019.0  predicted  by ICE is 84.8s,  the  actual  value  at  2019.0  is  69.2s  which  demonstrates  that  the  extrapolation
algorithm used by ICE is outdated.

Horizontal  parallax  and  semidiameter  of  a  body  can  be  extracted  from the  submenu  POSITIONS (F3).  Choose
APPARENT GEOCENTRIC POSITIONS (F1) and enter the name of the body (Sun, Moon, planets). The last column
shows the distance of the center of the body from the center of the Earth, measured in astronomical units (1 AU =
149.6 . 106 km). HP and SD are calculated as follows:

rE is the equatorial radius of the Earth (6378 km). rB is the radius of the respective body (Sun: 696260 km, Moon:
1378 km, Venus: 6052 km, Mars: 3397 km, Jupiter: 71398 km, Saturn: 60268 km). 

The apparent geocentric positions refer to TT (TDT). However, the difference between TT and UT has no significant
effect on HP and SD. 

To calculate the times of rising and setting of a body, go to the submenu RISE & SET TIMES (F6) and enter the
name of the body. The columns on the right display the time of rising, meridian transit, and setting for the assumed
location (UT+x hours, according to the time zone specified).

The increasing error of ∆T values predicted by ICE may lead to reduced precision when calculating navigation data
in the future. The coordinates of the Moon are particularly sensitive to errors of  ∆T. Unfortunately, ICE has no option
for editing and modifying the internal  ∆T algorithm. The high-precision part of ICE, however, is not affected since
TT (TDT) is the time argument.

To circumvent the ∆T problem, extract GHA and Dec using the following procedure:

1. Compute GAST using SIDEREAL TIME (F5). Here, the time argument is UT (!).

2. Edit date and time at INITIAL VALUES (F1). Now, the time argument is TT (= UT+∆T). Compute RA and 
Dec using POSITIONS (F3) and APPARENT GEOCENTRIC POSITIONS (F1).
 

3. Use the following formula to calculate GHA from GAST and RA (RA refers to the true vernal equinox of 
date):

(If the resulting angle is greater than 360°, subtract 360°.)

High-precision  GHA and Dec  values  thus obtained  can  be  used  as  an  internal  standard  to  cross-check  medium-
precision data obtained through NAVIGATION (F7).
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HP = arcsin
r E [km ]

distance [ km]
SD = arcsin

r B[km ]

distance [km ]

GHA[° ] = 15⋅GAST [h]  24h − RA [h]



Chapter 4

Finding One's Position (Sight Reduction)

Lines of Position

Any geometrical  or  physical  line  passing  through the  observer's  (still  unknown)  position  and  accessible  through
measurement or observation is called a position line or line of position, LOP. Examples are circles of equal altitude,
meridians,  parallels  of  latitude,  bearing  lines  (compass  bearings)  of  terrestrial  objects,  coastlines,  rivers,  roads,
railroad  tracks,  power  lines,  etc.  A single  position  line  indicates  an  infinite  series  of  possible  positions.  The
observer's  actual  position is marked  by the point  of intersection  of at  least  two position lines,  regardless of their
nature.  A position thus found is called  fix in navigator's language.  The concept of the position line is essential  to
modern navigation.

Sight Reduction

Finding a line of position by observation of a celestial object is called sight reduction. Although some background in
mathematics is required to comprehend the process completely, knowing the basic concepts and a few equations is
sufficient for most practical applications. The mathematical background is given in chapter 10 and chapter 11. In the
following,  we will  discuss the semi-graphic methods developed by  Sumner and St.  Hilaire.  Both methods require
relatively simple calculations only and enable the navigator  to plot lines of position on a nautical chart or  plotting
sheet (chapter 13).

Knowing altitude and geographic position of a body, we also know the radius of the corresponding circle of equal
altitude (our circular line of position) and the position of its center. As mentioned in chapter 1 already, plotting circles
of equal altitude on a chart  is usually impossible due to their large dimensions and the distortions caused by map
projection. However, Sumner and St. Hilaire showed that only a short arc of each circle of equal altitude is needed to
find one's position. Such a short arc can be represented by a secant or a tangent of the circle.

Local Meridian, Local Hour Angle and Meridian Angle

The meridian passing through a given position, usually that  of the observer,  is called  local meridian.  In celestial
navigation, the angular distance between the hour circle of the observed body (upper branch) and the local meridian
(upper branch) plays a fundamental  role.  On the analogy of the Greenwich hour angle,  we can measure this angle
westward from the local  meridian (0°...+360°).  In this case,  the angle is called  local hour angle,  LHA.  It is also
possible to measure the angle westward (0°...+180°) or eastward (0°...−180°) from the local meridian in which case it
is called  meridian angle,  t. In most navigational  formulas, LHA and t can be substituted for each other since the
trigonometric functions return the same results. For example, the cosine of +315° equals the cosine of −45° due to the
periodicity of trigonometric functions.

Like LHA, t is the algebraic  sum of the Greenwich hour angle of the body,  GHA, and the observer's  geographic
longitude, Lon. To make sure that the obtained angle is in the desired range, the following rules have to be applied
when forming the sum of GHA and Lon:

In all calculations, the sign of Lon and t, respectively, has to be observed carefully. The sign convention* used
throughout this publication is:

Eastern longitude: positive
Western longitude: negative

Eastern meridian angle: negative
Western meridian angle: positive (same as LHA)

*There are other sign conventions found in the literature. These require modified formulas and a different set of conversion rules.
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t = {GHA + Lon if GHA + Lon < 180 °
GHA + Lon − 360 ° if GHA + Lon > 180° }

LHA = {
GHA  Lon if 0 ° GHA Lon  360 °
GHA  Lon  360 ° if GHA  Lon  0 °
GHA  Lon − 360 ° if GHA  Lon  360 ° }



For reasons of symmetry,  we will operate with the meridian angle throughout this text.  Provided Lat and Dec are
constant, the meridian angle +t results in the same altitude as the meridian angle −t.*

*Accordingly, LHA leads to the same altitude as 360°-LHA.

Fig. 4-1 illustrates the various angles involved in the sight reduction process. The spherical triangle formed by GP,
AP, and the geographic north pole is called navigational (or nautical) triangle (chapter 11).**  AP is the observer's
position, be it real, estimated, or assumed (see intercept method).

**Other sources define the nautical triangle as the spherical triangle formed by GP, AP, and the elevated pole (the celestial pole above the horizon).
In this case, other rules than those used in this publication have to be used.

Sumner's Method

In December 1837, Thomas H Sumner, an American sea captain, was on a voyage from South Carolina to Greenock,
Scotland.  When approaching  St.  George's  Channel between  Ireland  and Wales,  he managed to measure  a  single
altitude of the Sun after a longer period of bad weather. Using the time sight formula (see chapter 6), he calculated a
longitude from his estimated latitude. Since he was doubtful about his estimate, he repeated his calculations with two
slightly different latitudes. To his surprise, he was able to draw a straight line through the three positions thus located
on his chart.  As it  happened,  the line passed through the position of a lighthouse off the coast  of Wales ( Small's
Light).  By intuition,  Sumner steered his ship along this line and soon after,  Small's  Light came in sight.  Sumner
concluded that he had found a ''line of equal altitude''. The publication of his method in 1843 marked the beginning of
“modern“ celestial  navigation [18]. Although rarely used today, it is still an interesting alternative to the intercept
method (see below). It is easy to comprehend and the calculations to be done are quite simple.

Fig. 4-2 shows the points where a circle of equal altitude (a small circle unless Ho=0) intersects two chosen parallels
of latitude.

An observer being between Lat1 and Lat2 is either on the arc A-B or on the arc C-D. With a rough estimate of the
longitude of his position, the observer can easily find on which of the two arcs he actually is, for example, A-B. The
arc thus found is the relevant part of our line of position, the other arc is discarded. On a chart, we can approximate
the line of position by drawing a straight line through A and B. This line, called Sumner line, is a secant of the circle
of equal altitude. The error caused by the curvature of the arc usually remains tolerable, with the exception of high-
altitude observations. Before plotting the Sumner line on our chart, we have to calculate the respective longitude of
each intersection point, A, B, C, and D. How to do this is described in the following.
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Procedure:
1.

We choose a parallel  of latitude  (Lat1) north of our estimated latitude.  Preferably,  Lat1 should be marked by the
nearest horizontal grid line on our chart or plotting sheet. We call this an assumed latitude.

2.
From Lat1 , Dec, and the observed altitude, Ho, we calculate the meridian angle, t, using the following formula:

The equation is derived from the navigational  triangle (chapter 10 & chapter  11).  It  has two solutions,  +t and  –t,
because cos(+t) = cos(–t). Geometrically, this corresponds to the fact that the circle of equal altitude intersects the
parallel of latitude at two points with a longitude difference of 2⋅t. Using the following formulas and rules, we obtain
the longitudes of these two points of intersection, Lon and Lon' :

Comparing  the  two longitudes  thus obtained  with  our  estimated  longitude,  we select  the  most  probable  one  and
discard the other. This method of finding one's longitude is called time sight (chapter 6).

3.
We choose an assumed parallel of latitude (Lat2) south of our estimated latitude. The difference between Lat1 and 
Lat2 should not exceed a few degrees. We repeat steps 1 and 2 with the second latitude, Lat2.

4.
On our plotting sheet, we mark each longitude thus obtained on its corresponding parallel  of latitude, and plot the
Sumner line through the points thus located (LOP1, see Fig. 4-3 ).

Using the same parallels  of latitude,  we repeat  steps 1 through 4 with the declination and observed altitude  of a
second body. The point where the Sumner line thus obtained, LOP2, intersects LOP1 is our fix.

If we have only a very rough estimate of our latitude, the resulting point of intersection may be slightly outside the
interval defined by both parallels, but the fix is still correct. As already said, any fix obtained with Sumner's method
has  a  small  error  caused  by ignoring  the  curvature  of  the  circles  of  equal  altitude.  We can  improve  the  fix  by
iteration. For this purpose, we take a chart with a larger scale, choose a new pair of assumed latitudes, nearer to the
fix, and repeat the procedure with the same altitudes.  Alternatively, we can choose three parallels of latitude, mark
the resulting longitudes on them, and plot the position line through these points with a flexible curve ruler. Ideally,
the azimuth difference between the observed bodies should be 90° (30°...150° is tolerable). Otherwise, the fix would
become indistinct. When the azimuth of a body is close to 0° or 180°, an almost horizontal LOP will be obtained on
the plotting sheet. This has to be observed when choosing the parallels of latitude and the scale of the plotting sheet.

Sumner's method has the advantage that we do not have to measure angles on a chart. Therefore, we can find the fix
by plotting the position lines on ordinary squared paper available at any stationary shop. Special small area plotting
sheets (chapter 13) are not needed here unless we want to advance or retire a position line (chapter 5).
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t = ± arccos
sin Ho − sin Lat ⋅sin Dec

cos Lat ⋅cos Dec

Lon = t − GHA

Lon' = 360 ° − t − GHA

If Lon −180 °  Lon  360 °
If Lon ' −180 °  Lon'  360 °
If Lon ' 180 °  Lon' − 360 °



The Intercept Method

This procedure  was developed by the French navy officer  St.  Hilaire and others and was first published in 1875.
Afterwards, it gradually became the standard procedure for sight reduction since it avoids some of the restrictions of
the time sight and  Sumner's method. Although the theoretical  background is more complicated than with  Sumner's
method, the practical application is very convenient.

Theory:

For any given position of the observer, the geocentric altitude of a celestial body is solely a function of the observer's
latitude, the declination of the body, and the meridian angle (or local hour angle).

The altitude formula is obtained by applying the law of cosines for sides to the navigational triangle (chapter 10 &
11):

An alternative form* of the altitude formula is based on the haversine formula described in chapter 10 and chapter 11:

*Only four trigonometric functions instead of five have to be calculated when using the latter version.

We choose an arbitrary point on our nautical chart which is not too far from our estimated position. Preferably this is
the nearest point where two grid lines on the chart intersect. This point is called  assumed position,  AP (Fig. 4-4).
Using  one  of  the  above  formulas,  we  calculate  the  altitude  of  the  body  resulting  from  Lat AP and  LonAP,  the
geographic coordinates of AP. The altitude thus obtained is called computed or calculated altitude, Hc.

Usually, Hc will slightly differ from the actually  observed altitude,  Ho (chapter 2). The difference,  ΔH, is called
intercept.

Ideally (no observation errors), Ho and Hc would be identical if the observer were exactly at AP.

In the following, we will discuss which possible positions of the observer would result in the same intercept, ΔH. For
this purpose, we assume that the intercept is an infinitesimal quantity and denote it by dH. The general formula is:

This differential equation has an infinite number of solutions. Since dH and both differential coefficients are constant,
it can be reduced to a linear equation of the general form:

Thus, the graph is a straight line, and it is sufficient to dicuss two special cases, dt=0 and dLat=0, respectively.

In the first case, the observer is on the same meridian as AP, and the small change dH is solely caused by a small
variation of latitude, dLat, whereas t is constant (dt = 0). We differentiate the altitude formula with respect to Lat:

Adding dLat to LatAP, we obtain the point P1, as illustrated in Fig.4-4.  P1 is on the circle of equal altitude.
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H = arcsin sin Lat ⋅sin Dec  cos Lat ⋅cos Dec⋅cos t 

 H = Ho − Hc

dH =
∂ H
∂ Lat

⋅d Lat 
∂ H
∂ t

⋅dt

d Lat = a  b⋅dt

sin H = sin Lat ⋅sin Dec  cos Lat⋅cos Dec⋅cos t

d sin H  = cos Lat ⋅sin Dec − sin Lat ⋅cos Dec⋅cos t ⋅d Lat

cos H ⋅dH = cos Lat ⋅sin Dec − sin Lat⋅cos Dec⋅cos t ⋅d Lat

d Lat =
cos H

cos Lat ⋅sin Dec − sin Lat ⋅cos Dec⋅cos t
⋅dH

H = f Lat , Dec , t 

H = arcsin (cos( Lat − Dec)− cos Lat ⋅cos Dec ⋅(1−cos t ))



In the second case, the observer is on the same parallel of latitude as AP, and dH is solely caused by a small change
of the meridian angle, dt, whereas Lat is constant (dLat=0). Again, we begin with the altitude formula:

Differentiating with respect to t, we get

Adding dt (corresponding with an equal change of longitude, dLon) to LonAP, we obtain the point P2 which is on the
same circle of equal altitude. Thus, we would measure Ho at P1 and P2, respectively. Knowing P1 and P2, we can
now plot a straight line passing through these positions. This line,  a tangent of the circle  of equal altitude,  is our
approximate  line of position,  LOP.  The great  circle  passing through AP and GP is represented by a straight line
perpendicular to the line of position, called azimuth line. The arc between AP and GP is the radius of the circle of
equal altitude. The distance between AP and the point where the azimuth line intersects the line of position is the
intercept, dH. The angle formed by the azimuth line and the local meridian of AP is called azimuth angle, Az. The
same angle is measured between the line of position and the parallel of latitude passing through AP (Fig. 4-4).

There  are  several  ways to  derive  Az and  the true  azimuth,  AzN,  from the  right  (plane)  triangle  defined  by the
vertices AP, P1, and P2:

Time-Altitude Azimuth:

Alternatively,  this formula can be derived from the navigational  triangle ( law of sines and cosines, chapter  10 &
chapter  11).  Az is  not  necessarily  identical  with  the  true  azimuth,  AzN, since  the  arccos  function  returns  angles
between 0° and +180°, whereas  AzN is measured from 0° to +360°. To obtain AzN, we have to apply the following

rules after calculating Az with the formula for time-altitude azimuth:

Time Azimuth:
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sin H = sin Lat ⋅sin Dec  cos Lat⋅cos Dec⋅cos t

d sin H  = −cos Lat ⋅cos Dec⋅sin t ⋅dt

cos H ⋅dH = −cos Lat ⋅cos Dec⋅sin t ⋅dt

dt = −
cos H

cos Lat ⋅cos Dec⋅sin t
⋅dH

cos Az =
dH

d Lat
=

cos Lat ⋅sin Dec − sin Lat ⋅cos Dec⋅cos t
cos H

Az = arccos
cos Lat ⋅sin Dec − sin Lat ⋅cos Dec⋅cos t

cos H

AzN = {Az if t < 0° (180 ° < LHA < 360 °)
360 ° − Az if t > 0 ° (0 ° < LHA < 180 °) }

tan Az =
d Lat

cosLat ⋅dt
=

sin t
sin Lat ⋅cos t − cos Lat ⋅ tan Dec



The factor cos Lat is the relative circumference of the parallel of latitude on which AP is situated (equator = 1).

Alternatively, the time azimuth formula can be derived from the navigational triangle ( law of cotangents, chapter 10
& chapter 11). Knowing the altitude is not necessary. This formula requires a different set of rules to obtain AzN:

Calculating the time azimuth is much more convenient with the arctan2  (= atan2) function. The latter is part of many
programming languages and spreadsheet programs and eliminates the quadrant problem. Thus, no conversion rules
are required to obtain AzN. In a LibreOffice spreadsheet, for example, the equation would have the following format:

(Some programming languages and spreadsheet programs use a semicolon as a separator, not a comma.)

Altitude Azimuth:

This formula is directly derived from the navigational triangle (cosine law, haversine formula, chapter 10 & chapter
11) without using differential calculus.

AzN is obtained through the same rules as used with the time-altitude azimuth:

Azimuth by the Law of Sines:

The azimuth can also be obtained by application of the law of sines for spherical triangles (chapter 10 & chapter 11).
The formula  is  quite  simple  and  does  not  require  the  latitude  to  be  known.  However,  this  comes  at  the  cost  of
ambiguity since the sine of any given angle,  α,  equals the sine of its supplement,  180°-α.  Therefore,  the formula
should be used with care.

To obtain the true azimuth, we apply the following rules:

To find out which of the two solutions for either case is the one we are looking for, we have to compare them with the
compass bearing of the observed body. The difference between both solutions becomes very small as Az approaches
+90° or –90°. In such a case, a clear distinction will be impossible, and one of the azimuth formulas described further
above should be chosen instead.
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Az = arctan
sin t

sin Lat⋅cos t − cos Lat ⋅tan Dec

Az N = {
Az if t < 0 (180 ° < LHA < 360° ) AND denominator < 0
Az + 360° if t > 0 (0 ° < LHA < 180 °) AND denominator < 0
Az + 180 ° if denominator > 0 }

cos Az =
sin Dec − sin H⋅sin Lat

cos H⋅cos Lat
= 1 −

cos ( H − Lat )− sin Dec
cos H ⋅cos Lat

Az = arccos
sin Dec − sin H ⋅sin Lat

cos H ⋅cos Lat
= arccos (1 −

cos (H − Lat )− sin Dec
cos H ⋅cosLat )

Az N = {Az if t < 0 (180 ° < LHA < 360 °)
360 ° − Az if t > 0 (0 ° < LHA < 180 °) }

Az N = 180 ° + degrees (atan2 (sin(Lat ) ∗ cos (t) − cos (Lat )∗ tan (Dec), sin( t) ) )

Az = arcsin
cos Dec⋅sin t

cos Ho

Az N = {180 °+ Az or −Az if t < 0 ° (180 ° < LHA < 360 °)
180 °+ Az or 360 °−Az if t > 0° (0 ° < LHA < 180°) }



Fig.  4-5 shows a macroscopic  view of the line of position, the azimuth line,  and the circles  of equal  altitude.  In
contrast to dH, ΔH is a measurable quantity. Further, the position line is curved.

Procedure for the Intercept Method:

Although the theory of the intercept method may look complicated at first glance, the practical  application is very
simple and does not require any background in differential calculus. The procedure comprises the following steps:

1.
We choose an assumed position, AP (see Fig. 4-1), which should be near to our estimated position. Preferably, AP
should be defined by an integer number of degrees or arcminutes for LatAP and LonAP, respectively, depending on the
scale of the chart we are using. Our estimated position itself may be used as well, but plotting a position line is easier
when putting AP on an intersection point of two grid lines.

2.
We calculate the meridian angle, tAP, (or the local hour angle, LHAAP) from GHA and LonAP, as shown earlier.

3.
We calculate the geocentric altitude of the observed body as a function of LatAP, tAP, and Dec (computed altitude):

4.
We calculate the true azimuth of the body, AzN, for example with the altitude azimuth formula:

5.
We calculate the intercept, ΔH, the difference between observed altitude, Ho (chapter 2), and computed altitude, Hc.
The intercept, which is directly proportional to the difference between the radii of the corresponding circles of equal
altitude, is usually expressed in nautical miles:
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Hc = arcsin sin Lat AP⋅sin Dec  cos Lat AP⋅cos Dec⋅cos t AP

Az = arccos
sin Dec − sin Hc⋅sin Lat AP

cos Hc⋅cos Lat AP

Az N = {Az if t  0 180 °  LHA  360 ° 
360 ° − Az if t  0 0 °  LHA  180 °  }

 H [nm ] = 60⋅  Ho [° ] − Hc [° ] 



6.
We take a chart or plotting sheet with a convenient scale (depending on the respective scenario), and draw a suitable
length of the azimuth line through AP (Fig. 4-6). On this line, we measure the intercept, ΔH, from AP (towards GP if
ΔH>0, away from GP if  ΔH<0) and draw a perpendicular through the point thus located. This perpendicular to the
azimuth line is our approximate line of position (the red line in Fig. 4-6).

7.
To obtain our position, we need at least one additional position line. We repeat the procedure with altitude and GP of
a second celestial  body or of the same body at  a  different  time of observation  (Fig.  4-7).  The  point  where  both
position lines (tangents) intersect is our fix. The second observation does not necessarily require the same AP to be
used.

Since the intercept method ignores the curvatures of the actual position lines, the obtained fix is not our exact position
but rather an improved position (compared with AP). The residual error remains tolerable as long as the radii of the
circles of equal altitude are not too small and AP is not too far from our actual position (chapter 16). The geometric
error inherent to the intercept method can be decreased by  iteration, i.e.,  substituting the obtained fix for AP and
repeating the calculations (same altitudes and GP's). This will result in a more accurate position. If necessary, we can
reiterate the procedure until the obtained position remains virtually constant (rarely needed).

Accuracy is also improved by observing three bodies instead of two. Theoretically, the position lines should intersect
each other at a single point.  Since no observation is entirely free of errors, we will usually obtain three points of
intersection forming an error triangle (Fig. 4-8).
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Area and shape of the error triangle give us a rough estimate of the quality of our observations (chapter 16). Our most
probable position,  MPP, is approximately (!) represented by the “center of gravity“ of the error triangle (the point
where the bisectors of the three angles of the error triangle meet).

When observing more than three bodies, the resulting position lines will form the corresponding polygons.

Direct Computation

If we do not want to plot lines of position to determine our fix, we can calculate the most probable position directly
from n observations (n > 1). The Nautical Almanac provides an averaging procedure based on statistical  methods.
First, the auxiliary quantities A, B, C, D, E, and G have to be calculated.

In the above formulas, Azi denotes the true azimuth of the respective body. The ΔH values are measured in degrees
(same unit as Lon and Lat). The geographic coordinates of the observer's MPP are then obtained as follows:

The method does not correct  for the geometric  errors caused by the curvatures of position lines. Again, these are
eliminated, if necessary, by iteration. For this purpose, we substitute the calculated MPP for AP. For each body, we
calculate new values for t (or LHA), Hc, ΔH, and AzN. With these values, we recalculate A, B, C, D, E, G, Lon, and
Lat.

Upon repeating this procedure, the resulting positions will converge rapidly. In the majority of cases, less than two
iterations will be sufficient, depending on the distance between AP and the true position.

We should keep in mind, however, that this procedure is sensitive to outliers which may lead to a distorted result.
Using the methods of  robust statistics (see chapter 16) might be the better choice when outliers are suspected to
exist.

Combining Different Lines of Position

Since the point of intersection of any two position lines, regardless of their nature, marks the observer's geographic
position, one celestial LOP may suffice to find one's position if another LOP of a different kind is available.
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A = ∑
i = 1

n

cos2 Az i

B = ∑
i = 1

n

sin Az i⋅cos Azi

C = ∑
i = 1

n

sin2 Azi

D = ∑
i =1

n

 H i ⋅cos Az i

E = ∑
i =1

n

 H i ⋅sin Az i

G = A⋅C − B2

Lon = LonAP 
A⋅E − B⋅ D
G⋅cos LatAP

Lat = Lat AP 
C ⋅D − B⋅E

G



In a desert devoid of any landmarks, for instance, we can determine our current position by finding the point on the
map where a position line obtained by observation of a celestial object intersects the dirt road we are travelling on
(Fig. 4-9).

We can as well find our position by combining our celestial LOP with the bearing line of a distant mountain peak or
any other prominent landmark (Fig. 4-10). B is the compass bearing of the terrestrial object (corrected for magnetic
declination).

High-altitude plots

In rare cases when a body near the zenith (H > 80°) is observed, we can not ignore the curvature of the position line.
In such a case,  the position should be improved by iteration.  Alternatively,  we can plot the whole circle of equal
altitude or the relevant part of it with a compass (Fig. 4-11). The radius on the chart is 90°-Ho. We should never
forget, however, that small circles of equal altitude increase the risk of mistaking the second point of intersection for
the true position (ambiguity).
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Chapter 5 

Finding the Position of an Advancing Vessel

Celestial  navigation  on an advancing  vessel  requires  a  correction  for  the  change of position between  subsequent
observations unless the latter are performed in rapid succession or, better, simultaneously by two observers.

To apply this correction,  the navigator  has to know two parameters,  course made good, CMG,  and  speed made
good, SMG. The former is the actual direction (measured clockwise from true north) in which the vessel is moving.
The latter is the (average) speed over ground.

Assuming that  we make our first  observation at  the instant  T1 and our second observation at  T2,  the distance,  d,
traveled during the time interval T2-T1 is

1 kn (knot) = 1 nm/h
  
Although we have no knowledge of our absolute position yet, we know our second position relative to the first one
now. On a chart, this shift of position is represented by an arrow (vector) defined by CMD and d. 

To find the absolute position, we plot both position lines in the usual manner, as illustrated in chapter 4. Next, we
choose an arbitrary point on the first position line,  LOP1 (resulting from the observation at T 1), and translate  this
point along the (free) vector defined by d and CMG. Finally, we draw a parallel of the first position line through the
point thus located. The point where this advanced position line intersects the second line of position (resulting from
the observation at T2) marks our position at the instant  T2. A position obtained in this fashion is called running fix
(Fig. 5-1).

In a similar manner, we can obtain our position at T1 by retiring the second position line, LOP2. In this case we have
to increase or decrease CMD by 180° (Fig. 5-2).
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Terrestrial lines of position may be advanced or retired in the same way as astronomical position lines.

It is also possible to choose two different assumed positions. AP1 should be close to the estimated position at T 1, AP2
close to the estimated position at T2 (Fig. 5-3).

A running fix is not as accurate as a stationary fix. For one thing, course and speed over ground can only be estimated
since current and wind (drift) are not exactly known in most cases.

Further, there is a geometrical error inherent to the method. The latter is based on the assumption that each point of
the circle  of equal  altitude,  representing a possible position of the vessel,  travels  the same distance,  d,  along the
rhumb line (chapter 12) defined by CMG. The result of such an operation, however,  is a slightly distorted circle.
Consequently, an advanced or retired LOP is not exactly parallel  to the original LOP. The resulting position error
usually increases as the distance, d, increases [19]. Thus, we should not travel hundreds of miles before making the
second observation when fairly accurate results are required.

5-2

Fig. 5-3

AP2

     LOP1
(advanced)

LOP2

Fix

to GP2

d

LOP1

to GP1

AP1

d



Chapter 6

Determination of Latitude and Longitude, Finding a Position by Direct Calculation

Latitude by Polaris

The  geocentric  altitude  of  a  celestial  object  being at  the  celestial  north  pole  would  be numerically  equal  to  the
latitude of the observer's position (Fig. 6-1).

This is nearly the case with Polaris, the pole star. However, since the declination of Polaris is not exactly 90° (89°
16.0' in 2000.0), the altitude of Polaris depends on its local hour angle. The altitude of Polaris is also affected, to a
lesser  degree,  by  nutation.  To  obtain  the  accurate  latitude  from  the  observed  altitude,  several  corrections  are
necessary:

The corrections a0, a1, and a2, respectively, depend on LHAAries (estimated), the observer's estimated latitude, and the
number of the current month. They are given in the Polaris Tables of the Nautical Almanac [12]. To extract the data,
the observer has to know his approximate position and the approximate time.

Unfortunately, the Nautical Almanac does not provide GHA and Dec for Polaris. When using a computer almanac,
however, we can find Lat with the following simple procedure. Lat E is our estimated latitude, Dec is the declination
of Polaris, and tE is the estimated meridian angle of Polaris (calculated from GHA and our estimated longitude). Hc is
the computed altitude, Ho is the observed altitude (chapter 4).

Adding the altitude difference, ΔH, to the estimated latitude, we obtain the improved latitude:

The improved latitude is accurate to 0.1' when LatE is smaller than ±70° and when the error of LatE is smaller than

2°,  provided  the  exact  longitude  is  known.  At  higher  latitudes,  the  algorithm  becomes  less  accurate  and  is  not
recommended. The method even tolerates a longitude error of up to 1°, in which case the resulting latitude error is
still smaller than 1'. Latitude by Polaris is basically a variant of the ex-meridian sight. A rigorous procedure is given
further below.

Noon latitude (latitude by maximum altitude)

This  is  a  very  simple  method  enabling  the  observer  to  determine  the  latitude  of  his  position  by  measuring  the
maximum altitude of  the Sun (or any other object). A very accurate time measurement is not required.

The altitude of the Sun passes through a flat maximum approximately (see noon longitude) at the moment of upper
meridian passage (local apparent noon, LAN) when t equals 0 and the GP of the Sun is either north or south of the
observer, depending on the declination of the Sun and the observer’s geographic latitude.
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Lat = Ho − 1 °  a0  a1  a2

Hc ≈ arcsin (sin Lat E⋅sin Dec + cos Lat E ⋅cos Dec⋅cos tE)

 H = Ho − Hc

Latimproved ≈ Lat E   H



The latter  is easily  calculated  by forming the algebraic  sum or difference  of the declination  and observed zenith
distance z (90°-Ho) of the Sun, depending on whether the Sun is north or south of the observer (Fig. 6-2).

1. Sun south of observer (Fig. 6-2a):  Lat = Dec  z = Dec − Ho  90 °

2. Sun north of observer (Fig. 6-2b):  Lat = Dec − z = Dec  Ho − 90 °

Northern declination is positive, southern declination negative.

Before starting the observations, we need a rough estimate of our current longitude to know the time of meridian
transit. We look up the time (UT) of Greenwich meridian transit of the Sun on the daily page of the Nautical Almanac
and add 4 minutes for each degree of western longitude or subtract 4 minutes for each degree of eastern longitude. To
determine the maximum altitude, we start observing the Sun approximately 15 minutes before the expected meridian
transit. We follow the increasing altitude of the Sun with the sextant, note the maximum altitude when the Sun starts
descending again, and apply the usual corrections. We look up the declination of the Sun at the approximate time
(UT) of local meridian passage on the daily page of the Nautical Almanac and apply one of the above formulas. 

The method may produce erratic results when the Sun culminates close to the zenith, in which case it is difficult to
find if the Sun is north or south of the observer.  Historically,  noon latitude and latitude by Polaris are among the
oldest methods of celestial navigation. With circumpolar bodies,  latitude can also be found by minimum altitude.

Ex-meridian sight

Sometimes,  it  may  be  impossible  to  measure  the  maximum  altitude  of  a  body.  For example,  the  latter  may  be
obscured by a cloud at the instant of culmination. If we have a chance to measure the altitude some time before or
after meridian transit, we are still able to find our latitude, provided we know the exact longitude of our position.

First, we use the law of sines for spherical triangles to calculate the azimuth angle from Dec, t, and Ho (see chapter
10 & 11). In contrast to the other azimuth formulas (see chapter 4), this one does not require the latitude to be known.
The azimuth angle thus obtained is only used as an intermediate quantity here. It is not to be confused with the true
Azimuth, AzN!

Since sin Az = sin (180°- Az), the above equation has two solutions, Az and 180°-Az. This corresponds to the fact
that the circle of equal altitude usually intersects the local meridian at two points of different latitude. We enter the
following formula which is based on Napier’s analogies (chapter 11), with Az. Afterwards, we repeat the calculation
with the supplement angle, 180°-Az.

Thus,  we obtain  two latitudes,  LatAz and  Lat180°-Az.  If  either  of  these  is  greater  than  90°,  we replace  it  with  its
supplement angle, 180°−Lat.
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sin Az =
cos Dec⋅sin t

cos Ho
Az = arcsin

cos Dec⋅ sin t
cos Ho

Lat = 90 °− 2⋅arctan
cos

Az + t
2

tan
Ho + Dec

2
⋅cos

Az − t
2



After that, we choose the angle which is nearest to our estimated latitude. Both solutions merge as Az approaches
+90° or  –90°. The sight has to be discarded when the difference between the two latitudes is too small for a clear
distinction, depending on the reliability of our estimate. Critical judgment is required.

With the advent  of position line navigation,  the ex-meridian sight became more or less obsolete and is mainly of
theoretical interest today. Usually, the navigator knows the latitude of his position better than the longitude. In that
case, the latter can easily be found by a time sight (see further below).

Latitude by two altitudes

Even if the longitude is unknown, the exact latitude can still be found by observation of two celestial  bodies. The
required quantities are Greenwich hour angle (or sidereal hour angle), declination, and the observed altitude of each
body [7]. The calculations are based upon spherical triangles (see chapter 10 & chapter 11). In Fig. 6-3, PN denotes
the north pole, O the observer’s unknown position, GP1 the geographic position of the first body, and GP2 the position
of the second body.

First, we consider the spherical triangle [GP1, PN, GP2]. Fig. 6-3 shows only one of several possible configurations. O
may as well be outside the triangle [GP1, PN, GP2]. ΔGHA is the difference between both Greenwich hour angles
which is equal to the difference between both sidereal hour angles.

Using the law of cosines for sides (chapter 10), we calculate d, the great circle distance between GP 1 and GP2. We
can use the absolute value of ΔGHA  since cos (ΔGHA) = cos (-ΔGHA).

Now we solve the same triangle for the angle ω, the horizontal distance between PN and GP2, measured at GP1:

For the  spherical  triangle  [GP1,  O,  GP2],  we calculate  the  angle  ρ,  the  horizontal  distance  between  O and GP2,
measured at GP1.
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 GHA = ∣GHA2 − GHA1∣ = ∣SHA2 − SHA1∣

cos d = sin Dec1⋅sin Dec2  cos Dec1⋅cos Dec2⋅cos  GHA 

d = arccos [ sin Dec1⋅sin Dec2  cos Dec1⋅cos Dec2⋅cos  GHA  ]

cos =
sin Dec2 − sin Dec1⋅cosd

cos Dec1⋅sin d

 = arccos
sin Dec2 − sin Dec1⋅cos d

cos Dec1⋅sin d



We calculate the angle ψ, the horizontal distance between PN and O, measured at GP1. There are two solutions, ψ1

and ψ2, since cos ρ = cos (-ρ):

The circles of equal altitude intersect each other at two points. The corresponding positions are on opposite sides of
the great circle going through GP1 and GP2 (not shown in Fig. 6-3). Using the law of cosines for sides again, we solve
the spherical triangle [GP1, PN, O] for Lat. Since we have two solutions for ψ, we obtain two possible latitudes, Lat1

and Lat2.

We choose the value nearest to our estimated latitude and discard the other one. If both solutions are very similar and
a clear distinction is not possible, one of the sights should be discarded, and a body with a more favorable position
should be chosen.

Although the method requires more complicated calculations than, e. g., a latitude by Polaris, it has the advantage
that measuring two altitudes usually takes less time than finding the maximum altitude of a single body. Moreover, if
fixed  stars  are  observed,  even  a chronometer  error  of  several  hours  has no significant  influence  on the  resulting
latitude since sidereal hour angles and declinations of stars change rather slowly. If the exact time of observation is
known, even the observer's longitude and, thus, his position can be calculated precisely (see end of chapter).

When the horizontal distance between the observed bodies is in the vicinity of 0° or 180°, the observer's position is
close to the great circle going through GP1and GP2. In this case, the two solutions for latitude are similar, and finding
which  one corresponds with the  actual  latitude  may be difficult  (depending  on the  quality  of  the estimate).  The
resulting latitudes are also close to each other when the observed bodies have approximately the same Greenwich
hour angle.

Noon longitude (longitude by equal altitudes)

The following method is based upon the equatorial  coordinates of the  apparent Sun. Thus, knowledge of the exact
equation of time (see chapter 3) is not required here.

At the instant of local meridian transit (local apparent noon, LAN), the longitude of the geographic position of the
Sun equals the observer‘s longitude. Thus, we only have to convert the Greenwich hour angle of the Sun to another
format to obtain the corresponding longitude.

Unfortunately, the exact moment of LAN is very difficult to observe since the altitude of the Sun passes through a
rather flat maximum. However, we can circumvent this problem by observing a chosen altitude of the ascending Sun
a few hours before LAN and noting the exact moment of observation (Date 1, UT1). After waiting a few hours, we
note  the  instant  at  which  we observe  the  same altitude  of the  descending  Sun after  LAN (Date 2,  UT2).  For this
purpose, we set our sextant or theodolite to a convenient altitude and note the two instants at which the chosen limb
of the Sun crosses the reference line indicated by the instrument. Afterwards, we find the corresponding values for
Greenwich hour angle and declination of the Sun in the almanac. We denote the values corresponding with Date 1 and
UT1 as GHA1 and Dec1 and the values corresponding with Date2 and UT2 as GHA2 and Dec2, respectively.
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cos  =
sin H 2 − sin H1⋅cos d

cos H 1⋅sin d

 = arccos
sin H 2 − sin H 1⋅cosd

cos H 1⋅sin d

1 = ∣ −  ∣  2 =   

sin Lat 1 = sin H 1⋅sin Dec1  cos H1⋅cos Dec1⋅cos1

Lat 1 = arcsin sin H 1⋅sin Dec1  cos H 1⋅cos Dec1⋅cos 1

sin Lat 2 = sin H 1⋅sin Dec1  cos H 1⋅cos Dec1⋅cos 2

Lat 2 = arcsin sin H 1⋅sin Dec1  cos H 1⋅cos Dec1⋅cos 2

Lon = { − GHAtransit IF GHA transit < 180 °
360 °− GHA transit IF GHA transit ≥ 180 ° } = 180 ° − mod(GHAtransit+180 ° , 360)



The altitude value itself is not of interest (no altitude corrections either,  provided there are no extreme changes in
temperature or atmospheric  pressure between the observations).  Only the corresponding GHA and Dec values are
needed for the calculations.

Assuming a stationary observer and a constant declination of the Sun (solstices), the arc described by the apparent
Sun in the sky is almost symmetrical and GHAtransit is approximately the arithmetic mean of GHA1 and GHA2 (Fig.
6-4).*

 

* GHA2 is smaller than GHA1 when the calendar date changes between both observations (Date2 > Date1).

        

Fig. 6-4

This  would  be  the  ideal  case.  In  reality,  the  observer‘s  position  often  changes  during  the  observation  interval,
particularly at sea. The change of position, defined by  ΔLon and ΔLat, can be calculated from course and average
speed over ground during the observation interval, UT2-UT1 (see further below). Further, the declination of the Sun
changes measurably during the greater  part  of the year,  the rate of change being greatest  around the times of the
equinoxes (up to approx. ±1′/h). Each of these influencing factors requires a correction to be applied.

1st correction (change of longitude):

If the ship moves westward (ΔLon < 0), the apparent motion of the Sun is slower than seen from a stationary point of
observation. Accordingly, an observer moving eastward (ΔLon > 0) will notice a faster motion of the Sun in the sky.
We correct for ΔLon as follows:

2nd correction (change of latitude):

The longitude error caused by a change in latitude can be dramatic and requires the navigator's particular attention,
even if the vessel travels at a moderate speed. Let us assume the ship moves along a meridian during the observation
interval. Lat1 be the observer‘s latitude at UT1 and Lat2 (obtained by dead reckoning) be the latitude at UT2. If the
exact  value of Lat1 is not known, an estimated value may be used. Using the  equation of equal altitudes [5], we
calculate  the  second correction  to  be  applied  to   GHA2,   ΔGHALat.  For this  purpose,  we first  have  to  find  the
approximate meridian angle of the Sun corresponding with GHA2

*:
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The equation of equal altitudes describes the change of hour angle equivalent to a small change of latitude:

Now, we have the Greenwich hour angle of the Sun corrected for a change of position defined by ΔLon and ΔLat.

3rd correction (change of declination):

Fig. 6-5 is a plot of the altitude of the Sun versus the GHA of the latter. It demonstrates how the shape of the apparent
arc described by the Sun is affected when the declination is not constant but changes from Dec1 to Dec2 between both
observations.  The example  shows a scenario  (strongly exaggerated)  in  which  the  declination  of  the  Sun changes
toward the observer‘s latitude during the interval of observation.

Fig. 6-5

The dotted red line shows the path of the Sun for a given constant declination, Dec 1. The dotted blue line shows how
the path would look with a different declination, Dec2. In both cases, the apparent path of the Sun is symmetrical with
respect  to GHAtransit and the  latter  equals  GHAmean.  However,  if  the  Sun's declination  varies  from  Dec1 to  Dec2

during the observation interval, the path shown by the continuous black line will result. Now, there is a measurable
difference between GHAtransit and GHAmean, and without further corrections there would be a significant error in the
longitude thus found. A change of the observer‘s latitude (see 2nd correction) toward the declination of the Sun causes
a similar effect.

The resulting error in longitude is greatest around the times of the equinoxes when the rate of change of Dec is at its
maximum. Moreover, the error increases with the observer's distance from the equator and may be quite dramatic in
polar regions.

The third correction to be applied to GHA2,   ΔGHADec, is calculated with another version of the  equation of equal
altitudes [5]:
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ΔGHA Dec = Δ t ≈ (
tan Lat mean

sin t
−

tan Decmean

tan t )⋅Δ Dec

Δ Dec = Dec2 − Dec1

ΔGHALat = Δ t ≈ (
tan Decmean

sin t
−

tan Latmean

tan t )⋅ΔLat

Δ Lat = Lat 2 − Lat 1 Latmean =
Lat 1 + Lat 2

2
Decmean =

Dec1 + Dec2

2

GHA2
**

= GHA2
*
− ΔGHALat
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Applying the third correction, we get

The improved value for GHAtransit , including the three corrections, is

Finally, we have

and

Although this is not a rigorous method, it is quite accurate.  At 80° latitude (+ or  −), the inherent error is a small
fraction of an arcsecond ( ±0.1''). As we move towards the equator, the error becomes even smaller.

Calculating with the Greenwich hour angle of the (apparent) Sun instead of UT has the advantage that we do not need
to know the current values for the equation of time.

ΔLon and ΔLat are calculated from course, C, and average speed, v, as follows (see chapter 12):

C is measured clockwise from true north (0°...360°).

The above considerations clearly demonstrate that determining one's exact longitude by equal altitudes of the Sun is
not as simple as it seems to be at first glance, particularly on a moving vessel. It is therefore understandable that with
the development of  position line navigation (including simple graphic solutions for a traveling vessel), longitude by
equal altitudes became less important.

Under certain circumstances (high latitudes, arctic or antarctic summer), it may be useful to observe the Sun a few
hours before and after local apparent midnight (lower local meridian transit). To obtain the correct longitude in this
case, we have to increase the meridian angle, t, by 180° before calculating the 2nd and 3rd correction and subtract 180°
from the longitude thus obtained.

Compared with a time sight (see farther below), a longitude by equal altitudes appears more cumbersome. However, a
time sight requires  knowledge of the exact  latitude,  otherwise  a  large  longitude  error  may result.  In contrast,  an
estimated  latitude  is  sufficient  for  a  longitude  by  equal  altitudes  since  a  latitude  error  will  only  influence  the
relatively small corrections for changes in latitude and/or declination.

Observation planning:

For observation planning, the approximate time of meridian transit should be known. It can be calculated using the
following formula. Estimated values for equation of time and geographic longitude are sufficient for this purpose.
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Δ Lat [ ' ] = v [kn ]⋅cosC⋅ (UT 2[h] − UT 1[h ] )

Lat2 = Lat1   Lat

Δ Lon [' ] ≈ v [kn]⋅
sin C

cos Lat mean

⋅ (UT 2[h] − UT 1 [h ] )

Lon2 = Lon1   Lon

1 kn knot  = 1 nm /h

GHA transit, impr. ≈
GHA1 + GHA2

***

2

Lon2 = Lon1 + Δ Lon

GHA2
***

= GHA2
**

− ΔGHA Dec

Lon1 = { − GHA transit, impr. IF GHA transit, impr. < 180 °
360 °− GHA transit, impr. IF GHA transit, impr. ≥180 ° }= 180 °− mod(GHA transit, impr.+180 ° , 360)

UT transit ≈ 12 h − EoT [h] −
Lon [° ]
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Theory of the equation of equal altitudes

The equation of equal altitudes is derived from the altitude formula (see chapter 4) using differential calculus.

1st case: latitude change with constant declination

Altitude formula:

First, we need to know how a small change in latitude would affect sin H. We form the partial derivative with respect
to Lat:

   

Thus, the change in sin H caused by an infinitesimal change in latitude, d Lat, is:

Now, we form the partial derivative with respect to t in order to find out how a small change in the meridian angle
would affect sin H:

Since the combined effects of latitude and meridian angle cancel each other with respect to their influence on sin H,
the total differential is zero:

Solving for dt, we obtain the following formula for an infinitesimally small change in latitude:

For a measurable small change in latitude, we get

2nd case: declination change with constant latitude

The calculations are done in the same way as with a changing latitude.
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sin H = sin Lat ⋅sin Dec  cos Lat⋅cos Dec⋅cos t

∂sin H 

∂Lat
⋅d Lat 

∂sin H 

∂ t
⋅dt = 0

dt = (
tan Dec

sin t
−

tan Lat
tan t )⋅d Lat

cos Lat ⋅cos Dec⋅sin t⋅d t = (cos Lat ⋅sin Dec − sin Lat ⋅cos Dec⋅cos t)⋅d Lat

−
∂(sin H )

∂ t
⋅d t =

∂(sin H )

∂Lat
⋅d Lat

Δ t ≈ ( tan Dec
sin t

−
tan Latmean

tan t )⋅Δ Lat

∂sin H 

∂Lat
= cos Lat ⋅sin Dec − sin Lat⋅cos Dec⋅cos t

sin H = sin Lat ⋅sin Dec  cos Lat⋅cos Dec⋅cos t

∂(sin H )

∂Dec
⋅d Lat = (cos Lat ⋅sin Dec − sin Lat ⋅cos Dec⋅cos t )⋅d Lat

∂sin H 

∂ t
= −cos Lat ⋅cos Dec⋅sin t

d t =
cos Lat⋅sin Dec − sin Lat⋅cos Dec⋅cos t

cos Lat ⋅cos Dec⋅sin t
⋅d Lat



Now, we need to know how a small change in declination would affect sin H.

We form the partial derivative with respect to Dec:

Thus, the change in sin H caused by an infinitesimal change in declination, d Dec, is:

As shown above,  we form the partial  derivative  with respect  to t in order  to find out how a small  change in the
meridian angle would affect sin H:

Again, the change in sin H caused by an infinitesimal change in the meridian angle, dt, is:

Since both effects cancel each other, the total differential is zero:

Thus, we get the formula for a small change in declination:

The meridian angle of the Sun at maximum altitude (stationary observer)

Fig.  6-5 indicates  that  the  maximum altitude  of  the  Sun is slightly  different  from the  altitude  at  the  moment  of
meridian passage if the declination changes.
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∂sin H 

∂ Dec
= sin Lat ⋅cos Dec − cos Lat ⋅sin Dec⋅cos t

∂(sin H )

∂Dec
⋅d Dec = (sin Lat ⋅cos Dec − cos Lat ⋅sin Dec⋅cos t)⋅d Dec

∂(sin H )

∂ t
= −cos Lat ⋅cos Dec⋅sin t

∂sin H 

∂ t
⋅d t = −cos Lat ⋅cos Dec⋅sin t⋅d t

∂sin H 

∂ Dec
⋅d Dec 

∂sin H 

∂ t
⋅d t = 0

−
∂(sin H )

∂ t
⋅d t =

∂(sin H )

∂Dec
⋅d Dec

cos Lat ⋅cos Dec⋅sin t ⋅d t = (sin Lat ⋅cos Dec − cos Lat ⋅sin Dec⋅cos t)⋅d Dec

d t =
sin Lat ⋅cos Dec − cos Lat ⋅sin Dec⋅cos t

cos Lat ⋅cos Dec⋅sin t
⋅d Dec

d t =  tan Lat
sin t

−
tan Dec

tan t ⋅d Dec

Δ t ≈ ( tan Lat
sin t

−
tan Decmean

tan t )⋅Δ Dec



At maximum altitude, the rate of change of altitude caused by the changing declination cancels the rate of change of
altitude caused by the changing meridian angle. The equation of equal altitude enables us to calculate the meridian
angle of the Sun at this moment.

Dividing by dDec, we get

Since in this case t is a very small angle, we can substitute tan t for sin t (or vice versa).

Solving for tan t, we get

Measuring the rate of change of declination in arcminutes per hour (1 h  15°), we get≙

For example, at the time of the spring equinox (Dec  0, dDec/dT   +1'/h) an observer being at +80° (N) latitude
would observe the maximum altitude of the Sun at t  +21.7', i. e., 86.6 seconds after local meridian transit (LAN).
An observer at +45° latitude, however, would observe the maximum altitude at t  3.8', i. e.,  only 15.3 seconds
after meridian transit.

The maximum altitude of the Sun

We  can  use  the  last  equation  to  estimate  the  systematic  error  of  a  noon  latitude.  The  latter  is  based  upon  the
maximum altitude of the Sun which may slightly differ from the altitude at the moment of meridian transit. Following
the above example, the observer at 80° latitude would observe the maximum altitude at t = 21,7' .

Between meridian transit (t = 0) and t = 21.7' , the declination of the Sun would have changed by ΔDec:

Using the diffentiated form of the altitude formula, we get

For the above example (Lat = 80°), a maximum altitude of approx. 10° 00' 00.7'' instead of exactly 10° would result.

This demonstrates  that  even at  the times of the equinoxes,  the systematic  error of a  noon latitude  caused by the
changing declination of the Sun is not significant because it is much smaller than other observational errors, e. g., the
errors in dip or refraction.
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d t = (
tan Lat
sin t

−
tan Dec

tan t )⋅d Dec

d t
d Dec

=
tan Lat
sin t

−
tan Dec

tan t

Δ H ≈
sin Lat ⋅cos Decmean − cos Lat ⋅sin Decmean⋅cos t

cos H transit

⋅Δ Dec

d t
d Dec

≈
tan Lat − tan Dec

tan t

tan t ≈ ( tan Lat − tan Dec)⋅
d Dec

d t

Δ Dec ≈
Dec2−Dec1

GHA2−GHA1

⋅ t

t ≈ arctan [( tan Lat − tan Dec)⋅
d Dec

d t ]

t ≈ arctan [( tan Lat − tan Dec)⋅
1

900
⋅

d Dec[ ' ]
d t [h] ]

H transit ≈ 90° −| Lat − Decmean |



A measurable error in latitude can only occur if the observer is very close to one of the poles (tan Lat!). Around the
times of the solstices, the error in latitude is practically non-existent.

Time sight

The process of deriving the longitude from a single altitude  of a body (as well  as the observation  made for this
purpose) is called time sight.
In contrast to a noon longitude, this method requires knowledge of the exact (!) latitude, e. g., a noon latitude or a
latitude by two altitudes. Solving the navigational triangle (chapter 11) for the meridian angle, t, we get:

Alternatively, we can use this formula which is based on the haversine formula (chapter 10 & 11):

Both equations have two solutions, +t and –t, since cos t = cos (–t). Geometrically, this corresponds with the fact that
the circle of equal altitude intersects the parallel of latitude at two points with a longitude difference of 2⋅t.

Using the following formulas and rules, we obtain the longitudes of these points of intersection, Lon1 and Lon2:

Even if we do not know the exact latitude, we can still use a time sight to derive a line of position from an assumed or
estimated latitude. After solving the time sight, we plot the assumed parallel of latitude and the calculated meridian.
Next, we calculate the azimuth of the body with respect to the position thus obtained (azimuth formulas, chapter 4)
and plot the  azimuth line. Our line of position is the perpendicular of the azimuth line going through the calculated
position (Fig. 6-6). 

Finding a LOP by time sight is mainly of historical  interest.  Today,  most navigators  prefer  the intercept  method
(chapter  4) which can be used without any restrictions regarding meridian angle (local  hour angle),  latitude,  and
declination  (see  below).  A time  sight  is  not  reliable  when the  body is  close  to  the  meridian.  Using  differential
calculus, we can demonstrate that the error of the meridian angle, dt, resulting from an altitude error, dH, varies in
proportion with 1/sin t:
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t = ± arccos
sin Ho − sin Lat ⋅sin Dec

cos Lat ⋅cos Dec

Lon1 = t − GHA

Lon2 = 360°− t − GHA

If Lon1 −180 °  Lon1  360 °
If Lon2 −180 °  Lon2  360 °
If Lon2 180 °  Lon2 − 360 °

dt = −
cos Ho

cos Lat ⋅cos Dec⋅sin t
⋅dH

t = ± arccos(1 −
cos(Lat − Dec)− sin Ho

cos Lat ⋅cos Dec )



Moreover, dt varies inversely with cos Lat and cos Dec. Therefore, high latitudes and declinations should be avoided
as well.

Last but not least, a small meridian angle increases the risk of choosing the wrong point of intersection on the parallel
of latitude (ambiguity).

Sumner’s method of finding a position line is based on two time sights (chapter 4).

Direct computation of a position

If we know the exact time, the observations for a latitude by two altitudes even enable us to calculate our position
directly, without graphic plot. After obtaining our latitude, Lat, from two altitudes (see above), we use the time sight
formula to calculate the meridian angle of one of the bodies. In case of the first body, for example, we calculate ±t1

from the quantities Lat, Dec1, and H1 (see  Fig. 6-3). Two possible longitudes result from the meridian angles thus
obtained. We choose the one nearest to our estimated longitude. This is a rigorous method, not an approximation.

In a similar manner, a position can be found by combining a noon latitude with a noon longitude.

Direct  computation  is  rarely  used  since  the  calculations  are  more  complicated  than  those  required  for  graphic
solutions. Of course, in the age of computers the complexity of the method does not present a problem anymore.
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Chapter 7

Finding Time and Longitude by Lunar Distances

In celestial navigation, time and longitude are interdependent. Finding one’s longitude at sea or in unknown terrain is
impossible without knowing the exact time and vice versa. Therefore, old-time navigators were basically restricted to
latitude sailing on long voyages, i. e., they had to sail along a chosen parallel of latitude until they came in sight of
the coast. Since there was no reliable estimate of the time of arrival, many ships ran ashore during periods of darkness
or bad visibility. Spurred by heavy losses of men and material, scientists tried to solve the longitude problem by using
astronomical events as time marks. In principle, such a method is only suitable when the observed time of the event is
virtually independent of the observer’s geographic position.

Measuring time by the apparent movement of the Moon with respect to the background of fixed stars was suggested
in the 15th century already (Regiomontanus) but proved impracticable since neither reliable ephemerides for the Moon
nor precise instruments for measuring angles were available at that time.

Around the middle of the 18th century, astronomy and instrument making had finally reached a stage of development
that made time measurement by lunar observations possible. Particularly, deriving the time from a so-called  lunar
distance, the angular distance of the Moon from a chosen reference body, became a popular method. Although the
procedure is rather cumbersome,  it  became an essential  part of celestial  navigation and was used far into the 19 th

century, long after the invention of the mechanical chronometer (Harrison, 1736). This was mainly due to the limited
availability of reliable chronometers and their exorbitant  price.  When chronometers became affordable around the
middle of the 19th century, lunar distances gradually went out of use. Until 1906, the Nautical Almanac included lunar
distance  tables  showing predicted  geocentric  angular  distances  between  the  Moon and selected  bodies  in  3-hour
intervals.* After the tables were dropped, lunar distances fell more or less into oblivion. Not much later, radio time
signals became available world-wide, and the longitude problem was solved once and for all. Today, lunar distances
are mainly of historical interest. The method is so ingenious, however, that a detailed study is worthwhile. 

The basic idea of the lunar distance method is easy to comprehend. Since the Moon moves across the celestial sphere
at a rate of about 0.5° per hour, the angular distance between the Moon, M, and a body in her path, B, varies at a
similar  rate  and rapidly enough to be used to measure  the time.  The time corresponding with an observed lunar
distance can be found by comparison with tabulated values.

Tabulated lunar distances are calculated from the geocentric equatorial coordinates of M and B using the cosine law:

or

D is the geocentric lunar distance. These formulas can be used to set up one’s own table with the aid of the
Nautical Almanac or any computer almanac if a lunar distance table is not available.

*Nowadays, it is possible to set up precomputed lunar distance tables for chosen bodies with the aid of a computer almanac 
and one of the above formulas.

Clearing the lunar distance

Before a lunar distance measured by the observer can be compared with tabulated values, it has to be reduced to the
corresponding geocentric  angle by clearing it  from the effects of refraction and parallax.  This essential  process is
called  clearing the lunar distance. Numerous procedures have been developed, among them rigorous and “quick”
methods. In the following, we will discuss the almost identical methods by Dunthorne (1766) and Young (1856). They
are rigorous for a spherical model of the Earth.
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cos D = sin DecM ⋅sin DecB  cos DecM ⋅cos DecB⋅cosGHAM − GHAB

cos D = sin DecM ⋅sin DecB  cos DecM ⋅cos DecB⋅cos [15⋅  RAM [h] − RAB [h]  ]



Fig. 7-1 shows the positions of the Moon, M, and a reference body, B, in the coordinate system of the horizon. We
denote the apparent positions of the centers of the Moon and the reference body by Mapp and Bapp, respectively. Z is
the zenith.

The side Dapp of the spherical  triangle  Bapp-Z-Mapp is the apparent  lunar  distance.  The altitudes of Mapp and Bapp

(obtained after applying the corrections for index error, dip, and semidiameter) are HMapp and HBapp, respectively. The
vertical  circles  of both bodies form the angle  α,  the difference  between the azimuth  of the Moon,  AzM,  and the
azimuth of the reference body, AzB:

The position of each body is shifted along its vertical circle by atmospheric refraction and parallax in altitude. After
correcting HMapp and HBapp for both effects, we obtain the geocentric positions M and B. We denote the altitude of M
by HM and the altitude of B by HB.  HM is always greater than HMapp because the parallax of the Moon is always
greater than refraction. The angle α is neither affected by refraction nor by the parallax in altitude:

The side D of the spherical triangle B-Z-M is the unknown geocentric lunar distance. If we knew the exact value for
α, calculation of D would be very simple (cosine law). Unfortunately, the navigator has no means for measuring α
precisely. It is possible, however, to calculate D solely from the five quantities Dapp, HMapp, HM, HBapp, and HB.

Applying the cosine formula to the spherical triangle formed by the zenith and the apparent positions, we get:

Repeating the procedure with the spherical triangle formed by the zenith and the geocentric positions, we get:

cos =
cos D − sin H M ⋅sin HB

cos H M ⋅cos H B

Since α is constant, we can combine both azimuth formulas:
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 = AzM − AzB

Az M = Az Mapp AzB = AzBapp

cos Dapp = sin HMapp⋅sin H Bapp  cos H Mapp⋅cos HBapp⋅cos

cos =
cos Dapp − sin H Mapp⋅sin H Bapp

cosH Mapp⋅cos HBapp

cos D = sin H M ⋅sin HB  cos H M ⋅cos H B⋅cos

cos D − sin H M ⋅sin H B

cos H M ⋅cos HB

=
cosDapp − sin H Mapp⋅sin H Bapp

cos H Mapp⋅cosH Bapp



Thus, we have eliminated the unknown angle α. Now, we subtract unity from both sides of the equation:

Using the addition formula for cosines, we have:

Solving for cos D, we obtain Dunthorne’s formula for clearing the lunar distance:

Adding unity to both sides of the equation instead of subtracting it, leads to Young’s formula:

Procedure

Deriving UT from a lunar distance comprises the following steps:

1.
We measure the altitude of the upper or lower limb of the Moon, whichever is visible,  and note the time of the
observation indicated by our watch, WT1LMapp.
We apply the corrections for index error and dip (if necessary) and get the apparent altitude of the limb, H1 LMapp. We
repeat the procedure with the reference body and obtain the watch time WT1Bapp  and the altitude H1Bapp.

2.
We  measure  the  angular  distance  between  the  limb  of  the  Moon  and  the  reference  body,  DLapp,  and  note  the
corresponding  watch  time,  WTD.  The  angle  DLapp has  to  be  measured  with  the  greatest  possible  precision.  It  is
recommended to measure a few DLapp values and their corresponding WTD values in rapid succession and calculate
the respective average value. When the Moon is almost full, it is not quite easy to distinguish the limb of the Moon
from the terminator  (shadow line).  In general,  the limb has a sharp appearance  whereas the terminator  is slightly
indistinct.

3.
We measure the altitudes of both bodies again, as described above. We denote them by H2 LMapp and H2Bapp, and note
the corresponding watch times of observation, WT2LMapp and WT2Bapp.
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cos D − sin H M ⋅sin H B

cos H M ⋅cos HB

− 1 =
cos D app − sin HMapp⋅sin H Bapp

cos H Mapp⋅cos H Bapp

− 1

cos D − sin H M ⋅sin H B

cos H M ⋅cos HB

−
cos H M⋅cos H B

cos H M⋅cos H B

=
cos Dapp − sin H Mapp⋅sin HBapp

cos HMapp⋅cos HBapp

−
cos H Mapp⋅cos H Bapp

cos H Mapp⋅cos H Bapp

cos D − sin H M ⋅sin H B − cos H M⋅cos H B

cos H M⋅cos HB

=
cos Dapp − sin H Mapp⋅sin H Bapp − cos HMapp⋅cos HBapp

cos HMapp⋅cos HBapp

cos D − cos H M − H B

cos HM ⋅cos HB

=
cos Dapp − cos HMapp − H Bapp

cos HMapp⋅cos HBapp

cos D =
cos H M ⋅cos HB

cos H Mapp⋅cos H Bapp

⋅[cos Dapp − cos HMapp − HBapp ]  cos HM − HB

cos D =
cosH M ⋅cos HB

cosH Mapp⋅cos HBapp

⋅ [cos Dapp  cos HMapp  HBapp ] − cos H M  H B



4.
Since  the  observations  are  only a few minutes  apart,  we can  calculate  the  altitude  of the  respective  body at  the
moment of the lunar distance observation by linear interpolation:

5.
We correct the altitude of the Moon and the angular distance DLapp for the augmented semidiameter of the Moon,
SDaug. The latter can be calculated directly from the altitude of the upper or lower limb of the Moon:

The altitude correction is:

The rules for the lunar distance correction are:

The above procedure is an approximation since the augmented semidiameter is a function of the altitude corrected for
refraction. Since refraction is a small quantity and since the total augmentation between 0° and 90° altitude is only
approx. 0.3’, the resulting error is very small and  may be ignored.

The Sun, when chosen as reference body, requires the same corrections for semidiameter.  Since the Sun does not
show a measurable  augmentation,  we can  use the  geocentric  semidiameter  tabulated  in  the  Nautical  Almanac  or
calculated with a computer program.

6.
We correct both altitudes, HMapp and HBapp, for atmospheric refraction, R.

Ri is subtracted from the respective altitude. The refraction formula is only accurate for altitudes above approx. 10°. 
Lower altitudes should be avoided anyway since refraction may become erratic and since the apparent disk of the
Moon (and Sun) assumes an oval shape caused by an increasing difference in refraction for upper and lower limb.
This distortion would affect the semidiameter with respect to the reference body in a complicated way.

7.
We correct the altitudes for the parallax in altitude:
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HLMapp = H1LMapp  H2LMapp − H1LMapp⋅
WT D − WT1LMapp

WT2LMapp − WT1LMapp

HBapp = H1Bapp  H2Bapp − H1Bapp⋅
WT D − WT1Bapp

WT2Bapp − WT1Bapp

tan SDaug =
k

[
1

sin2 HP M

− cos HLMapp ± k 
2 ]− sin H LMapp

k = 0.2725

upper limb: cos H LMapp − k lower limb: cos HLMapp  k

Lower limb: H Mapp = H LMapp  SDaug

Upper limb: HMapp = H LMapp − SDaug

Limb of moon towards reference body: Dapp = DLapp  SDaug

Limb of moon away from reference body: Dapp = DLapp − SDaug

Ri [ ' ] =
p [mbar]

1010
⋅

283
T [°C ] + 273

⋅(
0.96474
tan H i

−
0.00113
tan3 H i

) i = Mapp , Bapp H i > 10 °

sin PM = sin HP M ⋅cos H Mapp − RMapp  sin PB = sin HPB⋅cos HBapp − RBapp



We apply the altitude corrections as follows:

The correction for parallax is not applied to the altitude of a fixed star (HPB = 0).

8.
With Dapp, HMapp, HM, HBapp, and HB, we calculate D using Dunthorne’s or Young’s formula.

9.
The time corresponding with the geocentric distance D is found by interpolation. Lunar distance tables show D as a
function of  time, T (UT). If the rate of change of D does not vary too much (less than approx. 0.3’ in 3 hours), we
can  use  linear  interpolation.  However,  in  order  to  find  T,  we  have  to  consider  T  as  a  function  of  D  (inverse
interpolation).

TD is  the  unknown  time  corresponding  with  D.  D1 and  D2 are  tabulated  lunar  distances.  T1 and  T2 are  the
corresponding time (UT) values (T2 = T1 + 3h). D is the geocentric lunar distance calculated from Dapp. D has to be
between D1 and D2.

If  the  rate  of  change  of  D varies  significantly,  more  accurate  results  are  obtained  with  methods  for  non-linear
interpolation, for example,  with 3-point  Lagrange interpolation. Choosing three pairs of tabulated values, (T1, D1),
(T2, D2), and (T3, D3), TD is calculated as follows:

D may have any value between D1 and D3.

There must not be a minimum or maximum of D in the time interval [T 1, T3]. This problem does not occur with a
properly chosen body having a suitable rate of change of D. Near a minimum or maximum of D, ΔD/ΔT would be
very small, and the observation would be erratic anyway.

After finding TD, we can calculate the watch error, ΔT.

ΔT is the difference between our watch time at the moment of observation, WTD, and the time found by interpolation,
TD.

Subtracting the watch error from the watch time, WT, results in UT.

Improvements

The procedures described so far refer to a spherical Earth. In reality, however, the Earth has approximately the shape
of an ellipsoid flattened at the poles. This leads to small but measurable effects when observing the Moon, the body
nearest  to the Earth.  First, the parallax in altitude differs slightly from the value calculated for a spherical  Earth.
Second, there is a small parallax in azimuth which would not exist if the Earth were a sphere (see chapter 9). If no
correction is applied, D may contain an error of up to approx. 0.2’. The following formulas refer to an observer on the
surface of the reference ellipsoid (approximately at sea level).
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HM = H Mapp − RMapp  PM HB = HBapp − RBapp  PB

T D = T1  T2 − T 1⋅
D − D1

D2 − D1

T D = T1⋅
D − D2⋅D − D3

D1 − D2⋅D1 − D3
 T 2⋅

D − D1⋅D − D3

D2 − D1⋅D2 − D3
 T 3⋅

D − D1⋅D − D2

D3 − D1⋅D3 − D2

T 2 = T 1  3h T 3 = T 2  3h D1  D2  D3 or D1  D2  D3

 T = WT D − T D

UT = WT − T



The corrections require knowledge of the observer’s latitude, Lat, the true azimuth of the Moon, AzM, and the true
azimuth of the reference body, AzB.

Since the corrections are small, the three values do not need to be very accurate. Errors of a few degrees are tolerable.
Instead of the azimuth, the compass bearing of each body, corrected for magnetic declination, may be used.

Parallax in altitude:

This correction is applied to the parallax in altitude and is used to calculate H M with higher precision before clearing
the lunar distance.

f is the flattening of the Earth: f =
1

298.257
  

Parallax in azimuth:

The correction for the parallax in azimuth is applied after calculating HM and D. The following formula is a fairly
accurate approximation of the parallax in azimuth, ΔAzM:

In order to find how ΔAzM affects D, we go back to the cosine formula:

We differentiate the equation with respect to α:

Since d  = d AzM , the change in D caused by an infinitesimal change in AzM is:
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 PM ≈ f ⋅HPM⋅ [sin2⋅ Lat ⋅cos AzM⋅sin H Mapp − sin2 Lat ⋅cos H Mapp ]

PM , improved = PM   PM

HM = Hmapp − RMapp  PM , improved

 Az M ≈ f ⋅HPM⋅
sin 2⋅Lat ⋅ sin AzM

cos H M

cos D = sin H M ⋅sin HB  cos H M ⋅cos H B⋅cos

d cos D

d
= − cos H M⋅cos HB⋅sin 

d cos D = − sin D⋅d D

− sin D⋅d D = − cos H M ⋅cos HB⋅ sin⋅d 

d D =
cos H M ⋅cos H B⋅sin

sin D
⋅d 

d D =
cosH M ⋅cos HB ⋅sin

sin D
⋅d AzM



With a small but measurable change in AzM, we have:

Combining the formulas for ΔAzM and ΔD, we get:

In most cases, Dimproved will be accurate to 0.1'' (provided the measurements are error-free). The correction formula is
less accurate when the topocentric (~ apparent) positions of Moon and reference body are close (< 5°) together. The
formula should not be applied when the reference body is less than about four semidiameters (~1°) away from the
center of the Moon.

Accuracy

According to modern requirements, the lunar distance method is rather inaccurate. In the 18 th and early 19th century,
however, this was generally accepted because a longitude with an error of 0.5°-1° was still better than no longitude
measurement  at  all.  Said error is the approximate  result  of an error  of only 1’ in the measurement  of D Lapp,  not
uncommon for a sextant reading under practical conditions. Therefore, DLapp should be measured with greatest care.

The altitudes of both bodies do not quite require the same degree of precision because a small error in the apparent
altitude leads to about the same error in the geocentric altitude. Since both errors cancel each other to a large extent,
the resulting error in D is comparatively small.  An altitude  error of a few arcminutes  is tolerable  in most cases.
Therefore,  measuring  two  altitudes  of  each  body  and  finding  the  altitude  at  the  moment  of  the  lunar  distance
observation by interpolation is not absolutely necessary. Measuring a single altitude of each body shortly before or
after the lunar distance measurement is sufficient if a small loss in accuracy is accepted.

The position of the reference body with respect to the Moon is crucial. The rate of change of D should not be too low.
It   becomes  zero  when D passes  through a minimum or maximum,  making  an observation  useless.  This can  be
checked with lunar distance tables. Since the plane of the lunar orbit forms a relatively small angle (approx. 5°) with
the ecliptic, bright bodies in the vicinity of the ecliptic are most suitable (Sun, planets, selected stars).

The stars generally recommended for the lunar distance method are Aldebaran, Altair, Antares, Fomalhaut, Hamal,
Markab,  Pollux,  Regulus,  and Spica,  but  other  stars close to the ecliptic  may be used as well,  e.  g.,  Nunki.  The
historic lunar distance tables of the  Nautical Almanac contained only D values for those bodies having a favorable
position with respect to the Moon on the day of observation.
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 D ≈
cos H M ⋅cos HB⋅sin

sin D
⋅ Az M

Dimproved ≈ D   D

Dimproved ≈ D  f ⋅HPM ⋅
cos H B⋅sin 2⋅Lat ⋅sin AzM ⋅sin Az M − AzB

sin D



Chapter 8

Rise, Set, Twilight

General Conditions for Visibility

For the planning of observations, it is useful to know the times during which a certain body is above the horizon as
well as the times of sunrise, sunset, and twilight.

A body can be always above the horizon, always below the horizon, or above the horizon during a part of the day,
depending on the observer's latitude and the declination of the body.

A body is above the celestial  horizon at  any time of the day when the zenith distance  is smaller  than 90° at  the
moment of lower meridian passage, i. e., when the body is on the lower branch of the local meridian (Fig 8-1a). This
is the case if

If this condition is fulfilled all year round, the body is circumpolar, i. e., it never sets.

A body never rises above the celestial horizon when the zenith distance is greater than 90° at the instant of  upper
meridian passage (Fig 8-1b). This is the case if

A celestial body being on the same hemisphere as the observer is either sometimes or permanently above the celestial
horizon. A body being on the opposite hemisphere is either sometimes above the horizon or permanently invisible.

The Sun provides a good example of how the visibility of a body is affected by latitude and declination. At the time
of the summer solstice (Dec = +23.44°), the Sun (center) remains above the celestial horizon all day if the observer is
north of the arctic circle (Lat > +66.56°). At the same time, the Sun remains below the celestial horizon all day if the
observer is south of the  antarctic circle (Lat <  66.56°). At the times of the equinoxes (Dec  ≈ 0°), an observer at
either of the poles will observe the Sun moving along the horizon during the course of the day. At the time of the
winter solstice (Dec = −23.44°), the Sun is permanently visible south of the antarctic circle and invisible north of the
arctic circle. If the observer is between arctic and antarctic circle, the Sun  is visible during a part of the day all year
round.

Rise and Set

The events of rise and set can be used to determine latitude, longitude, or time. One should not expect very accurate
results, however, since atmospheric refraction may be erratic if the body is on or near the horizon.

The geometric rise or set of a body occurs when the center of the body passes through the celestial horizon (H = 0°).
Due to the influence of atmospheric refraction, all bodies except the Moon appear above the sensible horizon at this
instant.
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∣Lat  Dec∣  90 °

∣Lat − Dec∣  90 °



The Moon is not visible at  the moment  of her geometric  rise or set  since  the depressing effect  of the horizontal
parallax (1°)  is greater than the elevating effect of atmospheric refraction.

We begin with the well-known altitude formula (chapter 4) and set H at 0°:

Solving the equation for the meridian angle, t, we get :

The equation has no solution when the argument of the inverse cosine is smaller than 1 or greater than 1. In the first
case, the body is permanently above the horizon, in the latter case, the body remains below the horizon at any time.
Otherwise, the arccos function returns values in the range from 0° through 180°. Due to the ambiguity of the arccos
function, the equation has two solutions, one for rise and one for set. For the calculations below, we have to observe
the following rules:

If the body is rising (body eastward from the observer), t is treated as a negative quantity.

If the body is setting (body westward from the observer), t is treated as a positive quantity.

If we know our latitude and the time of rise or set, we can calculate our longitude:

GHA is the Greenwich hour angle of the body at the moment of rise or set. The sign of t has to be observed carefully
(see above). If  the resulting longitude is smaller than 180°, we add 360°.

Knowing our position, we can calculate the times of sunrise and sunset:

The UT value thus obtained may be negative or greater than 24h. Either case indicates a change of date occurring
between local meridian transit and the instant of rise or set. Add or subtract 24h if necessary.

The moments of sunrise and sunset obtained with the above formula are not quite accurate since Dec and EoT are
variable. Since we do not know the exact time of rise or set at the beginning, we have to use approximate values for
Dec and EoT initially. The time of rise or set is improved by iteration. For this purpose, we find the values for Dec
and EoT at  the  time  of  rise  or  set  thus calculated.  Then  we re-calculate  t  and  UT.  If  necessary,  we repeat  this
procedure until the results converge sufficiently. 

The times thus calculated are influenced by the irregularities of atmospheric refraction near the horizon. Therefore, a
time error of  ±2 minutes is not unusual.

Accordingly, we can calculate our longitude from the time of sunrise or sunset if we know our latitude:

Again, this is not a very precise method, and an error of several arcminutes in longitude is not unlikely.

Knowing our longitude, we are able to determine our approximate latitude from the time of sunrise or sunset:
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cos t = −
sin Lat⋅sin Dec
cos Lat⋅cos Dec

t = ± arccos (− tan Lat ⋅ tan Dec)

Lon = −GHA ± t

UT Sunrise ,Sunset ≈ 12 − EoT −
Lon[°]

15
±

t [° ]
15

Lon[° ] ≈ 15⋅(12 − UT Sunrise , Sunset − EoT )± t [° ]

t [° ] ≈ Lon[° ] − 15⋅(12 − UT Sunrise , Sunset − EoT )

Lat = arctan − cos t
tan Dec 

sin H = sin Lat ⋅sin Dec  cos Lat ⋅cos Dec⋅cos t = 0



Sunrise and sunset are defined as the instants at which the upper limb of the Sun appears on the astronomical
(= sensible) horizon (see glossary in [10] and [17]).

Taking into account the effects of refraction,  horizontal  parallax,  and semidiameter,  the geocentric  altitude of the
Sun's center is negative at the moment of rise or set.

By definition, the standard refraction for a body being on the sensible horizon at sea level, R H, is 34'. In reality, RH is
subject to random variations, mainly if temperature and atmospheric pressure differ from standard conditions.

Horizontal  parallax  (~0.15')  and  the  small  variations  in  semidiameter  (~16')  are  customarily  ignored  [17].
Accordingly, the corresponding altitude of the center of the Sun with respect to the celestial horizon is -50'.

(When observing a rise or set at sea, we further have to subtract the dip of horizon from H.)

Thus, referring to the upper limb of the Sun and the sensible horizon (Dip=0),  the meridian angle at  the time of
sunrise or sunset is:

The time of rise or set is calculated in the same way as shown above. Again, we have to re-iterate to improve the
result.

Azimuth and Amplitude

The azimuth angle of a rising or setting body is calculated with the azimuth formula (see chapter 4):

With H=0, we get:

Az  is  +90°  (rise)  and  90°  (set)  if  the  declination  of  the  body  is  zero,  regardless  of  the  observer's  latitude.
Accordingly, the Sun rises almost exactly in the east and sets in the west at the times of the equinoxes (geometric rise
and set).

Observing the upper limb of the Sun crossing the sensible horizon (H = −0.8333°), we have:

The true azimuth of the rising or setting body is:

The azimuth of a body at the moment of rise or set can be used to find the magnetic declination at the observer's
position (compare with  chapter 13).

The horizontal  angular  distance  of  a  rising  or  setting  body from the  east  or  west  point  on the  horizon  is called
amplitude and can be calculated from the azimuth. An amplitude of  E45°N, for instance, means that the body rises
45° north of the east point on the horizon.
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HSun = HP − SD − RH < 0

H ≈ − 16 ' − 34 ' = −50 ' = −0.8333 °

t = ± arccos
sin(−0.8333 ° )− sin Lat⋅ sin Dec

cos Lat ⋅cos Dec

Az = arccos
sin Dec − sin H ⋅sin Lat

cos H ⋅cos Lat

Az = arccos
sin Dec
cos Lat

Az ≈ arccos
sin Dec − sin (−0.8333 °)⋅sin Lat

cos Lat

Az N = {Az if t < 0
360 °− Az if t > 0}



Twilight

At sea, twilight is important for the observation of stars and planets since it is the only time when these bodies and
the horizon are visible. By definition, there are three kinds of twilight. The altitude, H, refers to the center of the Sun
and the celestial horizon.

Civil twilight:    -0.8333° > H ≥ 6°

Nautical twilight:                       -6° > H ≥ 12°

Astronomical twilight:            -12° > H ≥ 18°

In general,  the  nautical  twilight  is  considered  the  best  time  window for  observations  of  stars  and planets  at  sea
(visibility of brighter stars coinciding with visibility of sea horizon). However, exceptions to this rule are possible,
depending on the actual weather conditions and the brightness of the observed body.

The meridian angle for the Sun (center) at 9° altitude (middle of nautical twilight)  is:

Using this formula,  we can find the approximate time for our observations (in analogy to sunrise and sunset).  As
mentioned above, the simultaneous observation of stars or planets and the horizon is possible during a limited time
interval only.

To calculate the length of this interval,  T, we use the altitude formula and differentiate sin H with respect to the
meridian angle, t:

Substituting cosH.dH for d(sinH) and solving for dt, we get the change in the meridian angle, dt, as a function of a
change in altitude, dH:

With H = 9° and dH ≈ H =  6° (H = 6°...12°), we get:

Converting the change in the meridian angle to a time span (measured in minutes) and ignoring the sign, the equation
is stated as:

The shortest possible time interval for our observations (Lat = 0, Dec = 0, H = -9°, t = 99°) lasts approx. 24 minutes.
As the observer moves northward or southward from the equator,  cos Lat decreases.  Accordingly,  the duration of
twilight  increases.  When t is 180°,  T is infinite.  This is confirmed by the well-known fact  that  the duration of
twilight is shortest in equatorial regions and longest in polar regions.

We would obtain the same result when calculating t for H = 6° and H = 12°, respectively:
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t = ± arccos
sin(−9° )− sin Lat⋅sin Dec

cos Lat ⋅cos Dec

d sin H 

dt
= − cos Lat ⋅cos Dec ⋅sin t

d sin H  = − cos Lat⋅cos Dec⋅sin t⋅dt

dt = −
cos H

cos Lat ⋅cos Dec⋅sin t
⋅dH

Δ t [° ] ≈ −
5.93

cos Lat ⋅cos Dec⋅ sin t

 T [m ] ≈
24

cos Lat⋅cos Dec⋅sin t

ΔT [m ] = 4⋅(t−12 °[° ]− t−6 °[° ] )



The Nautical Almanac provides tabulated values for the times of sunrise, sunset, civil twilight and nautical twilight
for latitudes between 60° and +72° (referring to an observer being at the Greenwich meridian). In addition, times of
moonrise and moonset are given.
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Chapter 9

Geodetic Aspects of Celestial Navigation

The Ellipsoid

Celestial navigation is based upon the assumption that the Earth is a sphere. Accordingly, calculations are based on
the laws of spherical trigonometry. In reality, the shape of the Earth rather resembles an oblate spheroid (ellipsoid)
resulting  from  two  forces,  gravitation and  centrifugal  force,  acting  on  the  viscous  body  of  the  Earth.  While
gravitation alone would force the Earth to assume the shape of a sphere,  the state  of lowest potential  energy, the
centrifugal force caused by the Earth's rotation contracts the Earth along the axis of rotation (polar axis) and stretches
it along the plane of the equator. The local vector sum of both forces is called gravity.

There are several  reference ellipsoids in use to describe the shape of the Earth,  for example the  World Geodetic
System ellipsoid of 1984 (WGS 84). An important characteristic of the WGS 84 ellipsoid is that its center conincides
with the mass center of the Earth. There are special reference ellipsoids whose centers are not identical with the mass
center. Off-center ellipsoids are constructed to obtain a better fit for a particular region. The following considerations
refer to the WGS 84 ellipsoid which gives the best universal fit and is accurate enough for the purpose of navigation
in most cases. Fig. 9-1 shows a meridional section of the ellipsoid.

Earth data (WGS 84 ellipsoid) :

Equatorial radius re 6378137.0 m 

Polar radius rp 6356752.3142 m 

Flattening f = (re- rp) / re 1/298.25722 

 

Due to  the  flattening  of  the  Earth,  we have  to  distinguish  between  geodetic  and  geocentric  latitude  of  a  given
position.  The  geodetic  latitude,  Lat,  is  the  angle  between  the  local  normal  (perpendicular)  to  the  surface  of  the
reference ellipsoid and the line of intersection formed by the plane of the equator and the plane of the local meridian.
The geocentric latitude, Lat', is the angle formed by the local radius vector and said line of intersection. Geodetic and
geocentric latitude are interrelated as follows:

If the Earth were a sphere (f = 0),   geodetic  and geocentric  latitude would be the same.  With the spheroid,  both
quantities are equal only at the poles and on the equator.  At all other places,  the absolute value of the geocentric
latitude is smaller than the absolute value of the geodetic latitude. Due to the rotational symmetry of the ellipsoid
with  respect  to  the  polar  axis,  geodetic  and  geocentric  longitude  are  equal,  provided  the  same  reference
meridian is used*.  Maps are  usually  based upon  geodetic coordinates which are also referred  to as  geographic
coordinates [1]**. In this context it should be mentioned that the term “geographic position“, applied to a celestial
body, is misleading, since Greenwich hour angle and declination are geocentric coordinates (see chapter 3).

*Actually, the WGS84 (GPS) reference meridian is located 5.3 arcseconds east of the 1884 Greenwich meridian which passes through the historic
Airy transit instrument. The reason is the local deflection of the vertical (see further below).

**In other publications, e. g.,  [10], astronomical coordinates (see below) and geographic coordinates are considered as identical.
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tan Lat ' = (1−f )2
⋅ tan Lat



In the following, we will discuss the effects of the oblateness (flattening) of the Earth on celestial navigation.

Any zenith distance (and corresponding altitude) measured by the navigator refers to the local  direction of gravity
(plumb line)  which points to the astronomical  nadir  and thus defines  the  astronomical  zenith  which is exactly
opposite to the nadir. Even the visible sea horizon is defined by the astronomical zenith since the plane tangent to the
water surface at the observer's position is perpendicular to the local direction of gravity.

Under the hypothetical  (!) assumption that the mass distribution inside the ellipsoid is in a hydrostatic equilibrium,
the  plumb line coincides  with the  local  normal  to the ellipsoid which passes through the  geodetic  zenith.  Thus,
astronomical and geodetic zenith are identical.  Accordingly, the  astronomical coordinates of a terrestrial position
(obtained by astronomical observations) are equal to the geodetic (geographic) coordinates. As demonstrated in Fig.
9-1 for example, the altitude of the celestial north pole, PN, with respect to the geoidal horizon equals the geodetic,
not the geocentric latitude. A noon latitude, calculated from the (geocentric) declination and the zenith distance with
respect to the astronomical zenith would lead to the same result.

The  geocentric  zenith is defined  as the point  where  a straight  line  originating  from the center  of the Earth  and
passing through the  observer's  position  intersects  the  celestial  sphere.  The angle  between  this line  and the  local
normal to the reference ellipsoid is called angle of the vertical,  v. The angle of the vertical lies on the plane of the
local meridian and is a function of the geodetic latitude. The following formula was proposed by Smart [9]:

The coefficients of the above formula refer to the proportions of the WGS 84 ellipsoid.

The angle of the vertical at a given position equals the difference between geodetic and geocentric latitude (Fig. 9-1):

The maximum value of v, occurring at  45° geodetic  latitude,  is approx. 11.5'.  Thus, the geocentric  latitude of an
observer being at 45°geodetic latitude is only 44° 48.5'.

The navigator, of course, wants to know if the oblateness of the Earth causes significant errors due to the fact that
calculations of celestial navigation are based on the laws of spherical trigonometry. According to the above values for
polar radius and equatorial radius of the WGS 84 ellipsoid, the great circle distance of one arcminute is 1849 m at the
poles and 1855 m at the equator.  This small difference does not produce a significant error when plotting lines of
position.  It  is  therefore  sufficient  to  use the  adopted  mean  value  (1 nautical  mile  =  1.852 km).  However,  when
calculating the great circle distance (chapter 11) of two locations thousands of nautical miles apart, the error caused
by the oblateness of the Earth can increase to several nautical miles. If high accuracy is required, the formulas for
geodetic distance should be used [2].  The shortest path between two points on the surface of an ellipsoid is called
geodesic line. It is the equivalent to the arc of a great circle on the surface of a sphere.

The Geoid

The spheroid is  an idealized  description  of the  shape  of the  Earth.  In  reality,  the  Earth  has a  non-uniform mass
distribution and is not in a state of hydrostatic equilibrium. The rather irregular shape of the Earth is more accurately
described by the geoid, an equipotential surface of gravity.
 
The geoid has local anomalies in the form of elevations and depressions. Elevations occur at local accumulations of
matter (mountains,  ore deposits),  depressions at local  deficiencies of matter (large water bodies,  valleys,  caverns).
The elevation or depression of each surface point of the geoid with respect  to the reference  ellipsoid is found by
gravity measurement.

On the slope of an elevation or depression of the geoid, the direction of gravity (the normal to the geoid) does not
coincide with the normal to the reference ellipsoid, i. e., the astronomical zenith differs from the geodetic zenith in
such places.  The small angle between the local direction of gravity and the local normal to the reference ellipsoid, i.
e., the angular distance between astronomical and geodetic zenith, is called  deflection of the vertical. The latter is
composed of a meridional (north-south) component and a zonal (west-east) component.

The deflection of the vertical is usually negligible at sea and thus ignored by mariners. In the vicinity of mountain
ranges, however, significant deflections of the vertical (up to approx. 1 arcminute) have been reported (chapter 2).
Thus,  an  astronomical  position may  be  measurably  different  from  the  geodetic  (geographic)  position.  This  is
important to surveying and map-making. Therefore,  local corrections for the meridional and zonal component may
have to be applied to an astronomical position, depending on the required precision.
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v [ ' ' ] ≈ 692.666⋅sin 2⋅Lat  − 1.163⋅sin 4⋅Lat   0.026⋅sin 6⋅Lat 

v = Lat − Lat '



The Parallax of the Moon

Due to the oblateness of the Earth, the distance between geoidal and celestial horizon is not constant but can assume
any value between rp and re,  depending on the observer's latitude.  This has a measurable effect  on the parallax in
altitude of the Moon since tabulated values for HP refer  to the equatorial  radius,  r e.  The apparent position of the
Moon is further affected by the fact that usually the local direction of gravity does not pass through the center of the
ellipsoid. This displacement of the plumb line from the Earth's center causes a small (usually negligible) parallax in
azimuth unless the Moon is on the local meridian. In the following, we will calculate the effects of the oblateness of
the Earth on the parallax of the Moon with the exact formulas of spherical astronomy [9]. The effect of the oblateness
of the Earth on the apparent position of other bodies is negligible.

Fig. 9-2 shows a projection of the astronomical zenith, Za, the geocentric zenith, Zc, and the geographic position of

the Moon, M, on the celestial sphere, an imaginary hollow sphere of infinite diameter with the Earth at its center.

The geocentric zenith,  Zc, is the point where a straight line from the Earth's center through the observer's position

intersects the celestial sphere. The astronomical zenith, Za, is the point at which the plumb line going through the

observer's position intersects the celestial sphere. Za and Zc are on the same celestial meridian. M is the projected

geocentric position of the Moon defined by Greenwich hour angle and declination.

M' is the point where a straight line from the observer through the Moon's center intersects the celestial sphere. Z c, M,

and M' are on a great circle. The zenith distance measured by the observer is z a' because the astronomical zenith is

the  only reference  available. The quantity  we want  to know is za,  the astronomical  zenith  distance  corrected  for

parallax in altitude. This is the angular distance of the Moon from the astronomical zenith, measured by a fictitious
observer at the Earth's center.

The known quantities are v, Aa', and za'. In contrast to the astronomer, the navigator is usually not able to measure Aa'

precisely. For navigational purposes, the calculated azimuth (see chapter 4) may be substituted for Aa'.

We have three spherical triangles, ZaZcM', ZaZcM, and ZaMM'. First, we calculate zc' from za', v, and Aa' using the

law of cosines for sides (see chapter 10):
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cos zc
l

= cos za
l
⋅cos v  sin za

l
⋅sin v⋅cos 180 °− Aa

l


zc
l

= arccos cos za
l
⋅cos v − sin za

l
⋅sin v⋅cos Aa

l 



To obtain zc, we first have to calculate the relative (re = 1) local radius, ρ, and the geocentric parallax, pc:

HP is the equatorial horizontal parallax. The geocentric zenith distance corrected for parallax is:

Using the cosine formula again, we calculate Ac, the azimuth angle of the Moon with respect to the geocentric zenith:

The astronomical zenith distance corrected for parallax is:

Thus, the parallax in altitude (astronomical) is:

The small angle between M and M', measured at Za, is the parallax in azimuth, paz:

The parallax in azimuth does not exist when the Moon is on the local meridian. It is further non-existant when the
observer is at one of the poles or on the equator (v = 0) but greatest when the observer is at medium latitudes.  As a
consequence  of  the  parallax  in  azimuth,  the  horizontal  direction  of  the  Moon observed  from the  surface  of  the
ellipsoid  is  always  a  little  closer  to  the  elevated  pole  (the  celestial  pole  above  the  horizon)  than  the  horizontal
direction observed from the center of the ellipsoid. The parallax in azimuth does not exceed ±f HP when the Moon is⋅
on the horizon but increases with increasing altitude.  In most cases, particularly at sea, the navigator will not notice
the influence of the flattening of the Earth. Traditionally, the apparent altitude of a body is reduced to the geocentric
altitude through the established altitude correction procedure (including the correction for parallax in altitude). The
intercept  method (chapter  4) compares  the observed altitude  thus obtained  with the geocentric  altitude calculated
from  the  assumed  geodetic  (geographic)  coordinates  of  the  observer  and  the  geocentric  equatorial  coordinates
(chapter  3)  of  the  observed  body.  The  difference  between  observed  and  calculated  altitude  is the  intercept.  The
calculated azimuth is geocentric. A correction for the parallax in azimuth (see above) is usually omitted since such a
degree of precision can not be reproduced when plotting position lines on a nautical chart. On land, however, more
accurate altitude measurement is possible,  and the navigator or surveyor may wish to use refined methods for the
calculation of his position when observing the Moon.

Medium-precision method

During the course of altitude corrections,  we calculate  the parallax in altitude,  P, with the formulas for spherical
bodies (chapter 2). After doing this, we calculate the approximate correction for the flattening of the Earth, ΔP:

Adding ΔP to P, we get the improved parallax in altitude which we use for our further calculations instead of P:
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pc = arcsin ⋅sin HP⋅sin zc
l 

 =
r
r e

=  1 − 2 e2
− e4

⋅sin2 Lat

1 − e2
⋅sin2 Lat

e2
= 1 −

r p
2

re
2

zc = zc
l
− pc

Ac = arccos
cos za

l
− coszc

l
⋅cosv

sin zc
l
⋅sin v

za = arccos  cos zc⋅cosv  sin zc⋅sin v⋅cos Ac 

PA = z a
l
− za

paz = arccos
cos pc − cos za⋅cos za

l

sin z a⋅sin za
l

 P ≈ f ⋅HP ⋅[ sin2⋅ Lat ⋅cos Az N ⋅sin H − sin2 Lat⋅cos H ]

P improved = P   P



As a result, we obtain a more accurate intercept (chapter 4). The above correction formula is accurate to a fraction of
an arcsecond.

The approximate parallax in azimuth is obtained through a simple formula: 

The topocentric true azimuth is

The formula for the parallax in azimuth is also accurate to a fraction of an arcsecond. It becomes less accurate as the
altitude approaches 90°. Observing bodies with such altitudes, however, is difficult and usually avoided.

Rigorous method*

For  even  more  accurate  results,  we use  the  topocentric  equatorial  coordinates of  the  observed  body for  sight
reduction. Instead of the center of the Earth, the observer’s position is the origin of this coordinate system. The plane
of the topocentric equator is parallel to the geocentric equator. The plane of the local meridian remains the same. The
values for altitude and true azimuth calculated from the topocentric coordinates of the observed body are topocentric
as well. There is neither a parallax in altitude nor a parallax in azimuth, so we have to skip the parallax correction and
have to correct for the topocentric (augmented) semidiameter of the body when performing the altitude corrections.

The topocentric equatorial coordinates of a celestial body are obtained from the geocentric ones through coordinate
transformation. The given quantities are:

Geographic latitude of the observer Lat
Geocentric meridian angle t
Geocentric declination Dec
Equatorial horizontal parallax HP
Polar radius of the Earth rp
Equatorial radius of the Earth re

To be calculated:

Topocentric meridian angle t'
Topocentric declination Dec'

First, we calculate a number of auxiliary quantities:

Eccentricity of the ellipsoid, distance between center and focal point of a meridional section (re = 1):

Local radius ( re = 1):

*The formulas are rigorous for an observer on the surface of a reference ellipsoid the center of which coincides with the mass center of the Earth.
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e = 1−  r p

r e


2

ρ =
r p

re

⋅
1

√1−e2
⋅cos2 Lat '

 Az N ≈ f ⋅HP ⋅
sin2⋅Lat ⋅sin AzN , geocentric

cos H geocentric

AzN , topocentric = Az N , geocentric − Δ AzN



Geocentric latitude of the observer:

The topocentric coordinates of the body, t' and Dec',  are calculated as follows. Δt is the parallax in hour angle:
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Δ t = arctan
ρ⋅cos Lat '⋅sin HP⋅sin t

cos Dec − ρ⋅cos Lat '⋅sin HP⋅cos t

t ' = t + Δ t

Dec ' = arctan
(sin Dec − ρ⋅sin Lat '⋅sin HP)⋅cos Δ t

cos Dec − ρ⋅cos Lat '⋅sin HP ⋅cos t

Lat ' = arctan [ ( r p

re
)

2

⋅ tan Lat ] = arctan [ (1−f )2
⋅ tan Lat ]



Chapter 10

Spherical Trigonometry

The Earth  is  usually  regarded  as  a  sphere  in  celestial  navigation  although an  oblate  spheroid  would  be  a better
approximation. Otherwise, navigational calculations would become too difficult for practical use. The position error
introduced by the spherical Earth model is usually very small and stays within the "statistical noise" caused by other
omnipresent errors like, e.g., abnormal refraction, rounding errors, etc.

Although it is possible to perform navigational calculations solely with the aid of tables (H.O. 229, H.O. 211, etc.)
and with little  mathematics,  the principles  of celestial  navigation can  not be comprehended without knowing the
elements of spherical trigonometry.

The Oblique Spherical Triangle

Like any triangle, a spherical triangle is characterized by three sides and three angles. However, a spherical triangle is
part of the surface of a sphere, and the sides are not straight lines but arcs of great circles (Fig. 10-1).

A great circle is a circle on the surface of a sphere whose plane passes through the center of the sphere (see chapter
3). 

Any side of a spherical  triangle can be regarded as an angle - the angular distance between the adjacent vertices,
measured at the center of the sphere. The interrelations between angles and sides of a spherical triangle are described
by the law of sines, the law of cosines for sides, the law of cosines for angles, the law of sines and cosines, the law
of cotangents, Napier's analogies, and Gauss' formulas (apart from other formulas).

Law of sines:

Law of cosines for sides:

Law of cosines for angles:
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sin A1

sin s1

=
sin A2

sin s2

=
sin A3

sin s3

cos s1 = cos s2⋅coss3  sin s2⋅sin s3⋅cos A1

cos s2 = coss1⋅coss3  sin s1⋅sin s3 ⋅cos A2

cos s3 = cos s1⋅cos s2  sin s1⋅sin s2⋅cos A3

cos A1 = − cos A2⋅cos A3  sin A2 ⋅sin A3⋅cos s1

cos A2 = − cos A1⋅cos A3  sin A1⋅sin A3⋅coss2

cos A3 = − cos A1⋅cos A2  sin A1⋅sin A2⋅cos s3



Law of sines and cosines:

Law of cotangents:

Napier's analogies:

Gauss' formulas:

These formulas and others derived thereof enable any quantity (angle or side) of a spherical triangle to be calculated
if three other quantities are known. 

Particularly the law of cosines for sides is of interest since it can solve the majority of navigational problems.
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tan
A1  A2

2
⋅ tan

A3

2
=

cos
s1 − s2

2

cos
s1  s2

2

tan
A1 − A2

2
⋅ tan

A3

2
=

sin
s1 − s2

2

sin
s1  s2

2

tan
s1  s2

2

tan
s3

2

=

cos
A1 − A2

2

cos
A1  A2

2

tan
s1 − s2

2

tan
s3

2

=

sin
A1 − A2

2

sin
A1  A2

2

sin
A1  A2

2

cos
A3

2

=

cos
s1 − s2

2

cos
s3

2

cos
A1  A2

2

sin
A3

2

=

cos
s1  s2

2

cos
s3

2

sin
A1 − A2

2

cos
A3

2

=

sin
s1 − s2

2

sin
s3

2

cos
A1 − A2

2

sin
A3

2

=

sin
s1  s2

2

sin
s3

2

sin s1⋅cos A2 = cos s2 ⋅sin s3 − sin s2⋅cos s3⋅cos A1

sin A1⋅cot A2 = cot s2⋅sin s3 − cos s3⋅cos A1

sin s2⋅cos A3 = cos s3⋅sin s1 − sin s3⋅cos s1⋅cos A2

sin s3⋅cos A1 = cos s1⋅sin s2 − sin s1⋅cos s2⋅cos A3

sin s1⋅cos A3 = cos s3⋅sin s2 − sin s3⋅cos s2 ⋅cos A1

sin s2⋅cos A1 = cos s1⋅sin s3 − sin s1⋅cos s3⋅cos A2

sin A1⋅cot A3 = cot s3⋅sin s2 − cos s2⋅cos A1

sin A2⋅cot A3 = cot s3⋅sin s1 − cos s1⋅cos A2

sin A2⋅cot A1 = cot s1⋅sin s3 − cos s3⋅cos A2

sin A3⋅cot A1 = cot s1⋅sin s2 − cos s2⋅cos A3

sin s3⋅cos A2 = cos s2⋅sin s1 − sin s2⋅cos s1⋅cos A3

sin A3⋅cot A2 = cot s2⋅sin s1 − cos s1⋅cos A3



Haversine formula

The haversine formula was very popular in the pre-electronic age because it is particularly suitable for logarithmic
calculations by means of tabulated log hav x values.

The haversine function is defined as follows:

The haversine formula for the oblique spherical triangle is stated as

With hav x = (1 - cos x)/2, the haversine formula is stated as

The haversine formula is another form of the law of cosines for sides.

Proof:

Addition identity:

Replacing cos(s2-s3) with cos s2⋅cos s3 + sin s2⋅sin s3, we get

Quod erat demonstrandum.

This is how the haversine formula looks when replacing hav x with the equivalent sin2(x/2):

In this form, the haversine formula is often used for the calculation of great circle distances (chapter 12):
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hav α =
1 − cosα

2
= sin2

(
α
2 )

hav s1 = hav (s2 − s3) + sin s2 ⋅sin s3⋅hav A1

hav s2 = hav (s1 − s3) + sin s1⋅sin s3⋅hav A2

hav s3 = hav (s1 − s2) + sin s1⋅sin s2⋅hav A3

cos s1 = cos (s2 − s3) − sin s2⋅sin s3 ⋅(1 − cos A1)

cos s2 = cos (s1 − s3) − sin s1⋅sin s3 ⋅(1 − cos A2)

cos s3 = cos (s1 − s2) − sin s1⋅sin s2⋅(1 − cos A3)

sin2 s1

2
= sin2 (s2 − s3)

2
+ sin s2⋅sin s3 ⋅sin2 A1

2

sin2 s2

2
= sin2 (s1 − s3)

2
+ sin s1⋅sin s3 ⋅sin2 A2

2

sin2 s3

2
= sin2 (s1 − s2)

2
+ sin s1⋅sin s2⋅sin2 A3

2

cos s1 = cos (s2 − s3) − sin s2⋅ sin s3 ⋅(1 − cos A1)

cos(s2 − s3) = cos s2 ⋅cos s3 + sin s2⋅sin s3

cos s1 = cos s2⋅cos s3 + sin s2⋅ sin s3 − sin s2⋅sin s3 ⋅(1 − cos A1)

cos s1 = cos s2⋅cos s3 + sin s2⋅sin s3 ⋅(1 − (1 − cos A1))

cos s1 = cos s2⋅cos s3 + sin s2⋅ sin s3 ⋅cos A1

s1 = 2⋅arcsin √sin 2 (s2 − s3)

2
+ sin s2⋅sin s3 ⋅sin2 A1

2



The Right Spherical Triangle

Solving a spherical triangle is less complicated when it contains a right angle ( Fig. 10-2). Using  Napier's rules of
circular parts, any quantity can be calculated if only two other quantities (apart from the right angle) are known.

We arrange the sides forming the right angle (s1, s2) and the  complements of the remaining angles (A1,  A2) and

opposite side (s3) in the form of a circular diagram consisting of five sectors, called "parts" (in the same order as they

appear in the triangle). The right angle itself is omitted (Fig. 10-3):

According to  Napier's rules, the sine of any part of the diagram equals the product of the tangents of the adjacent
parts and the product of the cosines of the opposite parts:

In a simpler form, these equations are stated as:

10-4

sin s1 = tan s2⋅ tan 90 °− A2 = cos 90 °− A1⋅cos 90 °− s3

sin s2 = tan 90 °− A1⋅ tan s1 = cos90 °− s3⋅cos90 °− A2

sin 90 °− A1 = tan 90 °− s3⋅ tan s2 = cos 90 °− A2⋅cos s1

sin90 °− s3 = tan 90 °− A2⋅ tan 90 °− A1 = cos s1⋅cos s2

sin 90 °− A2 = tan s1⋅ tan90 °− s3 = cos s2⋅cos90 °− A1

sin s1 =
tan s2

tan A2

= sin A1⋅sin s3

sin s2 =
tan s1

tan A1

= sin s3⋅sin A2

cos A1 =
tan s2

tan s3

= sin A2⋅cos s1

cos s3 =
1

tan A2⋅ tan A1

= cos s1⋅cos s2

cos A2 =
tan s1

tan s3

= cos s2⋅sin A1



There are several applications for the right spherical  triangle in navigation, for example  Ageton's sight reduction
tables (chapter 11) and great circle navigation (chapter 13). 
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Chapter 11

The Navigational Triangle

The  navigational (nautical) triangle is the (usually) oblique spherical  triangle formed by the north pole,  PN,  the

observer's assumed position, AP, and the geographic position of the celestial  object,  GP (Fig. 11-1).  All common
sight reduction procedures are based upon the navigational triangle.

Intercept method

When using the intercept method (chapter 4),  the latitude of the observer ’s (assumed or real)  position, LatAP,  the

declination of the observed celestial body, Dec, and the meridian angle, t, or the local hour angle, LHA, (calculated
from the longitude of AP and the GHA of the object), are the known quantities. 

The first step is calculating the side z of the navigational triangle by using the law of cosines for sides:

Since cos (90°-x) equals sin x and vice versa, the equation can be written in a simpler form:

The side z is not only the  great circle distance between AP and GP but also the  zenith distance of the celestial
object and the great circle radius of the circle of equal altitude (see chapter 1). 

Substituting the altitude H for z, we get

Solving the equation for H leads to the altitude formula known from chapter 4:
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cos z = cos90 °− Lat AP⋅cos 90 °− Dec   sin 90 °− Lat AP⋅sin90 °− Dec⋅cos t

cos z = sin Lat AP⋅sin Dec  cos Lat AP⋅cos Dec⋅cos t

sin H = sin Lat AP⋅sin Dec  cos Lat AP⋅cos Dec⋅cos t

H = arcsin sin Lat AP⋅sin Dec  cos LatAP⋅cos Dec⋅cos t 



Instead of the law of cosines for sides, we can use the haversine formula (see chapter 10) to calculate H:

Substituting the equivalent (1-cos x)/2 for hav x and multiplying both sides with 2, we get

The altitude calculated for a given position (assumed or real) is called computed altitude, Hc.

The azimuth angle of the observed body is also calculated by means of the law of cosines for sides:

 

Using the computed altitude instead of the zenith distance results in the following equation:

Solving the equation for Az finally yields the altitude-azimuth formula from chapter 4:

Solving the haversine formula for Az, we get

The arccos function returns angles between 0° and 180°. Therefore,  the resulting azimuth angle is not necessarily
identical with the true azimuth, AzN (0°... 360°, measured clockwise from true north) commonly used in navigation.

In all cases where t is negative (GP east of AP) , AzN equals  Az. Otherwise (t positive,  GP westward from AP as

shown in Fig. 11-1), AzN is obtained by subtracting Az from 360°. 

Time sight

When the meridian angle,  t,  (or the local  hour angle,  LHA) is the quantity to be calculated (time sight,  Sumner's
method),  Dec, LatAP  (the assumed latitude),  and the observed zenith distance or altitude (z or Ho) are the known

quantities. Again, the law of cosines for sides is applied:
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cos 90 °− Dec  = cos 90 °− LatAP⋅cos z  sin 90 °− Lat AP⋅sin z⋅cos Az

sin Dec = sin Lat AP⋅cos z  cos LatAP⋅sin z⋅cos Az

sin Dec = sin Lat AP⋅sin Hc  cos Lat AP⋅cos Hc⋅cos Az

Az = arccos
sin Dec − sin Lat AP⋅sin Hc

cos Lat AP⋅cos Hc

cos z = cos 90 °− Lat AP⋅cos90 °− Dec   sin 90 °− Lat AP⋅sin 90 °− Dec⋅cos t

sin Ho = sin LatAP⋅sin Dec + cos Lat AP⋅cos Dec⋅cos t

cos t =
sin Ho − sin Lat AP⋅sin Dec

cos Lat AP⋅cosDec

t = ± arccos
sin Ho − sin LatAP⋅ sin Dec

cos Lat AP⋅cos Dec

hav z = hav (Lat − Dec) + cos Lat⋅cos Dec⋅hav t

sin H = cos (Lat − Dec) − cos Lat ⋅cos Dec⋅(1−cos t)

H = arcsin (cos(Lat − Dec)− cos Lat⋅cos Dec⋅(1−cos t ))

1 − cos z = 1 − cos(Lat − Dec) + cos Lat⋅cos Dec⋅(1 − cos t)

Az = arccos (1−
cos(Lat AP − Hc) − sin Dec

cos Lat AP⋅cos Hc )



The obtained meridian angle, t,  is then used as described in chapter 4 and chapter 6.

When observing a celestial body at the time of meridian passage (e. g., for determining one's latitude), the local hour
angle is zero,  and the navigational  triangle becomes infinitesimally narrow. In this case, the sides of the spherical
triangle can be calculated by simple addition or subtraction.

The Divided Navigational Triangle 

An alternative method for solving the navigational triangle is based upon two right spherical triangles obtained by
constructing a great circle passing through GP and intersecting the local meridian perpendicularly at X (Fig. 11-2).

The first right triangle is formed by PN, X, and GP, the second one by GP, X, and AP. The auxiliary parts R and K

are intermediate quantities used to calculate z (or Hc) and Az. K is the geographic latitude of X. Both triangles are
solved  using  Napier's  rules  of  circular  parts (see  chapter  9).  Fig.  11-3 illustrates  the  corresponding  circular
diagrams:

According to Napier's rules, Hc and Az are calculated by means of the following formulas:
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sin R = sin t⋅cos Dec ⇒ R = arcsin sin t⋅cos Dec



Substitute 180°K for K in the following equation if |t| > 90° (or  90° < LHA < 270°):

For further calculations, substitute 180°Az for Az if K and Lat have opposite signs or if  |K|  |Lat|. To obtain the
true azimuth, AzN (0°... 360°), the following rules have to be applied:

The  divided  navigational  triangle  is  of  considerable  importance  since  it  forms  the  theoretical  background  for  a
number of  sight reduction tables, e.g.,  the Ageton Tables (see below). It is also used for  great circle navigation
(chapter 12).

Using the secant and cosecant functions (sec x = 1/cos x, csc x = 1/sin x), we can write the equations for the divided
navigational triangle in the following form:

Substitute 180°K for K in the following equation if |t| > 90°:

Substitute 180°Az for Az if K and Lat have opposite signs or if |K||Lat|.

In logarithmic form, these equations are stated as:

With the logarithms of the secants and cosecants of angles arranged in the form of a suitable table, we can solve a
sight by a sequence of simple additions and subtractions. Apart from the table itself, the only tools required are a
sheet of paper and a pencil.

The  Ageton  Tables  (H.O.  211),  first  published  in  1931,  are  based  upon the  above  formulas  and  provide  a  very
efficient arrangement of angles and their log secants and log cosecants on 36 pages. Since all calculations are based
on absolute values, certain rules included in the instructions have to be observed.

Sight reduction tables were developed many years before electronic calculators became available in order to simplify
calculations necessary to reduce a sight. Still today, sight reduction tables are preferred by people who do not want to
deal  with the formulas of spherical  trigonometry.  Moreover,  they provide a valuable  backup method if electronic
devices fail.

Two modified versions of the Ageton Tables are available (2019) at:  https://celnav.de/page3.htm
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sin Dec = cos R⋅sin K ⇒ sin K =
sin Dec
cos R

⇒ K = arcsin
sin Dec
cos R

sin Hc = cos R⋅cos K − LatAP ⇒ Hc = arcsin [ cos R⋅cosK − Lat AP ]

sin R = cos Hc⋅sin Az ⇒ sin Az =
sin R

cos Hc
⇒ Az = arcsin

sin R
cos Hc

Az N = {
−Az if LatAP  0  N  AND t  0 180 ° LHA  360 ° 
360 °− Az if LatAP  0 N  AND t  0 0 ° LHA  180 ° 

180 ° Az if LatAP  0 S }

csc R = csc t⋅sec Dec

csc K =
csc Dec

sec R

csc Hc = sec R⋅sec K − Lat 

csc Az =
csc R

sec Hc

log csc R = log csc t  log sec Dec

log csc K = log csc Dec − log sec R

log csc Hc = log sec R  log sec K − Lat 

log csc Az = log csc R − log sec Hc



Chapter 12

General Formulas for Navigation

Although  the  following  formulas  are  not  part  of  celestial  navigation,  they  are  indispensible  because  they  are
necessary to calculate distance and direction (course) from the point of departure, A, to the point of arrival, B, as
well as to calculate the position of B from the position of A if course and distance are known. The true course, C, is
the angle made by the vector of motion and the local meridian. It is measured from true north (clockwise through
360°). Knowing the coordinates of A, LatA and LonA, and the coordinates of B, LatB and LonB, the navigator has the

principal choice between rhumb line navigation (simple procedure but longer distance) and great circle navigation
(shortest possible distance on a sphere). Combinations of both methods are possible.

Rhumb Line Navigation 

A rhumb line, also called  loxodrome, is a line on the surface of the Earth intersecting all meridians at a constant
angle,  C. Thus, a rhumb line is represented by a straight line on a Mercartor  chart  (see chapter 13) which makes
voyage planning quite simple. On a globe, a rhumb line forms a spherical spiral extending from pole to pole unless it
is identical with a meridian (C = 0° or 180°) or a parallel of latitude (C = 90° or 270°). A vessel steering a constant
course travels along a rhumb line, provided there is no drift. Rhumb line course, C , and distance, d, are calculated as
shown below. First, we imagine traveling the infinitesimal distance dx from the point of departure, A, to the point of
arrival, B. Our course is C (Fig. 12-1):

The distance, dx, is the vector sum of a north-south component, dLat, and a west-east component, dLon . cos Lat. The
factor cos Lat is the relative circumference of the respective parallel of latitude (equator = 1):

If the distance between A (defined by LatA and LonA) and B (defined by LatB and LonB) is a measurable quantity, we
have to integrate:
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tan C =
d Lon⋅cos Lat

d Lat

d Lat
cos Lat

=
1

tan C
⋅d Lon

∫
LatA

LatB

d Lat
cos Lat

=
1

tan C
⋅∫

Lon A

LonB

d Lon

ln [ tan  LatB

2




4  ] − ln [tan  Lat A

2




4  ] =
LonB − LonA

tanC



Measuring angles in degrees and solving for C, we get:

The term LonB-LonA has to be in the range between –180° tand +180°. If it is outside this range, we have to add

or subtract 360° before entering the rhumb line course formula.

The arctan function returns values between -90° and +90°. To obtain the true course (0°...360°), we apply the
following rules:

 

To find the total length of the rhumb line track, we calculate the infinitesimal distance dx:

The total length d is found through integration:

Finally, we get:

If both positions have the same latitude, the distance can not be calculated using the above formulas. In this case, the
following formulas apply (C is either 90° or 270°):
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tan C =
LonB − Lon A

ln

tan  LatB

2




4 
tan  LatA

2




4 

C = arctan
LonB − LonA

ln

tan  Lat B

2
 45 ° 

tan  Lat A

2
 45 ° 

C  {
C if Lat B  Lat A AND LonB  LonA

360° C if Lat B  Lat A AND LonB  Lon A

180 ° C if Lat B  Lat A
}

dx =
d Lat
cosC

d =
1

cosC
⋅∫

Lat A

Lat B

d Lat =
LatB − LatA

cosC

d [km ] =
40031.6

360
⋅

Lat B − Lat A

cos C
d [nm ] =60⋅

Lat B − Lat A

cosC

d [km] =
40031.6

360
⋅LonB − LonA⋅cos Lat d [nm ] =60⋅LonB − Lon A⋅cos Lat



Great Circle Navigation

Great circle distance, dAB, and course, CA, are calculated on the analogy of zenith distance and azimuth. For this

purpose, we consider the navigational  triangle (see chapter 11) and substitute A for GP, B for AP, dAB for z, and

ΔLonAB (difference of longitude) for LHA (Fig. 12-2):

Quite often, the haversine formula (chapter 10 & 11) is used to calculate great circle distances:

(Remember that northern latitude and eastern longitude are positive, southern latitude and western longitude negative.) 

Replacing hav(x) with the equivalent sin2(x/2), and solving for dAB, we get

A great  circle  distance  has  the  dimension  of  an angle  (measured  at  the  center  of the  Earth).  To measure  d AB in
distance units, we multiply it by 40031.6/360 (distance measured in km) or by 60 (distance in nm).

Here is another variant of the haversine formula. This one is (slightly) more accurate because the arctan function is
less affected by the limited number of decimals available in electronic calculators than the arcsin function. This is
due to the fact that the curve of the arctan function is rather flat near 90° (+ or -) whereas the curve of the arcsin
function is very steep in this range.

 

(Most spreadsheets use the format atan2(denominator,numerator), either with a comma or a semicolon as a separator.)
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d AB = arccos ( sin Lat A⋅sin Lat B + cos Lat A⋅cos LatB⋅cos Δ LonAB )

Δ LonAB = LonB − LonA

hav d AB = hav (Δ Lat AB) + cos Lat A⋅cos Lat B⋅hav (Δ LonAB)

d AB = 2⋅arcsin √(sin2(
Δ Lat AB

2 ) + cos Lat A⋅cos Lat B⋅sin2(
Δ LonAB

2 ))

Δ Lat AB = Lat B − LatA

x = sin2(
Δ Lat AB

2 ) + cos Lat A⋅cos LatB⋅sin2(
Δ LonAB

2 )

d AB = 2⋅arctan √x

√(1−x)
= 2⋅atan2(√1− x ,√ x)



Initial Course:

If the term sin(LonB-LonA) is negative,  we replace CA with 360°-CA in order to obtain the true course (0°...  360°

clockwise from true north).

In Fig. 12-2, CA is the initial great circle course, CB the final great circle course. Since the angle between the great

circle and the respective local meridian varies as we progress along the great circle (unless the great circle coincides
with the equator or a meridian), we can not steer a constant course as we would when following a rhumb line.

Theoretically,  we have to adjust the course continually.  This is possible with the aid of navigation computers and
autopilots. If such means are not available, we have to calculate an updated course at certain intervals (see below).

Great circle navigation requires more careful voyage planning than rhumb line navigation. On a Mercator chart (see
chapter 13), a great circle track appears as a line bent towards the equator. As a result, the navigator may need more
information about the intended great circle track in order to verify if it leads through navigable areas.

With  the exception of the equator,  every  great  circle  has two  vertices,  the points farthest  from the  equator.  The
vertices have the same absolute value of latitude (with opposite sign) but are 180° apart in longitude. At each vertex
(also called apex), the great circle is tangent to a parallel of latitude, and C is either 90° or 270° (cos C = 0). Thus, we
have a right spherical triangle formed by the north pole, PN, the vertex,V, and the point of departure, A (Fig. 12-3).

To derive the formulas needed for the following calculations, we use Napier's rules of circular parts (Fig. 12-4). The
right angle is at the bottom of the circular diagram. The five parts are arranged clockwise.
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CA = arccos
sin LatB − sin Lat A⋅cosd AB

cos LatA⋅sin d AB



First, we need the latitude of the vertex, LatV:

Solving for LatV, we get:

The absolute value of sin CA is used to make sure that LatV does not exceed ±90° (the arccos function returns values

between 90° and 180° for negative arguments). The equation has two solutions, according to the number of vertices.
Only the vertex lying ahead of us is relevant to voyage planning. It is found using the following modified formula:

sng(x) is the signum function:

If V is located between A and B (like shown in Fig. 12-3), our latitude passes through an extremum at the instant we
reach V. This does not happen if B is between A and V.

Knowing LatV, we are able to calculate the longitude of V. Again, we apply Napier's rules:

Solving for ΔLonAV, we get:

The longitude of V is

(Add or subtract 360° if necessary.)

The term sng (sin CA) in the above formula provides an automatic correction for the sign of  ΔLonAV.

Knowing the position of V (defined by LatV and LonV), we are now able to calculate the position of any chosen

point, X, on the intended great circle track (substituting X for A in the right spherical triangle). Using Napier's rules
once more, we get:

Further, we can calculate the course at the point X:

Alternatively, CX can be calculated from the oblique spherical triangle formed by X, PN, and B.
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cos Lat V = sin CA⋅cos Lat A

LatV = ± arccos  ∣sin C A∣⋅cos Lat A 

LatV = sgn  cosCA ⋅arccos  ∣ sinC A∣⋅cos Lat A 

sgn x  = {
−1 if x0
0 if x=0
1 if x0 }

cos LonAV =
tan Lat A

tan LatV

 LonAV =  LonV −  LonA

 LonAV = arccos
tan Lat A

tan LatV

LonV =LonA  sgn sin CA ⋅arccos
tan LatA

tan LatV

tan LatX = cos LonXV ⋅ tan LatV  LonXV = LonV − LonX

Lat X = arctan cos  LonXV ⋅ tan LatV 

cosC X = sin  LonXV ⋅ sin Lat V

CX = {
arccos sin LonXV⋅sin LatV  if sin C A 0

arccos sin LonXV⋅sin LatV   180 ° if sinC A 0 }



The above formulas enable us to establish suitably spaced waypoints on the great circle and connect them by straight
lines  on the  Mercator  chart.  The  series  of  legs  thus  obtained,  each  one  being  a rhumb line  track,  is  a  practical
approximation of the intended great circle track. Further, we are now able to see beforehand if there are obstacles in
our way.
  
Mean latitude

Because of their simplicity,  the  mean latitude formulas are often used in everyday navigation. Mean latitude is a
good approximation for rhumb line navigation for short and medium distances between A and B. The method is less
suitable for polar regions (convergence of meridians).

Course:

             
The true course is obtained by applying the same rules to C  as to the rhumb line course (see above).

Distance:

If C = 90° or C = 270°, we have to use the following formulas:

Dead Reckoning

Dead reckoning is the navigational term for extrapolating one's new position, B, from the previous position, A, the
course made good, CMD, and the distance, d. The latter is calculated from the vessel's speed made good, SMG, and
the time elapsed:

1 kn (knot) = 1 nm/h
  
The position thus obtained is called a dead reckoning position, DRP.

Since a DRP is only an approximate  position (due to the influence  of drift,  etc.),  the mean latitude  method (see
above) provides sufficient accuracy. On land, dead reckoning is of limited use since it is usually not possible to steer
a constant course (apart from driving in large, entirely flat desert areas).

At sea, the DRP is needed to choose a suitable AP for the intercept method. If celestial observations are not possible
and electronic navigation aids not available, dead reckoning may be the only way of keeping track of one's position.
Apart from the very simple graphic solution, there are two formulas for the calculation of the DRP. 

Calculation of new latitude:

Calculation of new longitude:

If the resulting longitude is greater than +180°, we subtract 360°. If it is smaller than  -180°, we add 360°.

If our movement is composed of several components (including drift, etc.), we have to replace the terms d ∙cos C and
d∙sin C with the following terms:
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C = arctan cos Lat M⋅
LonB− LonA

Lat B− Lat A
 Lat M =

Lat A  Lat B

2

d [km ] =
40031.6

360
⋅

Lat B − Lat A

cos C
d [nm ] = 60⋅

Lat B − LatA

cosC

Lat B[° ] = Lat A[° ] +
360

40031.6
⋅d [km ]⋅cosCMD Lat B[° ] = Lat A[° ] +

d [nm ]⋅cosCMD
60

LonB[° ] = LonA[° ] +
360

40031.6
⋅

d [km ]⋅sinCMD
cos Lat M

LonB [° ] = LonA[° ] +
d [nm ]⋅sin CMD

60⋅cos Lat M

∑ d i⋅cosC i and ∑ d i ⋅sin C i

d [km ] =
40031.6

360
⋅ LonB − LonA ⋅cos Lat d [nm ] = 60⋅  LonB − LonA ⋅cos Lat

d [nm ] = (T 2[h] − T 1[h] )⋅SMG [kn ]



Chapter 13

Charts and Plotting Sheets

Mercator Charts

Sophisticated navigation is not possible without the use of a map (chart), a projection of a certain area of the Earth's
surface  with  its  geographic  features  on  a  plane.  Among  the  numerous  types  of  map  projection,  the  Mercator
projection,  named after  the Flemish-German cartographer  Gerhard Kramer (Latin:  Gerardus Mercator),  is mostly
used  in  navigation  because  it  produces  charts  with  an  orthogonal  grid  which  is  most  convenient  for  measuring
directions and plotting  lines  of position.  Further,  rhumb lines  appear  as straight  lines on a Mercator  chart.  Great
circles do not, apart from meridians and the equator which are also rhumb lines.

In order to construct a Mercator chart, we have to remember how the grid printed on a globe looks. At the equator, an
area of, e. g., 2 by 2 degrees looks almost like a square, but  it appears as a narrow trapezoid when we place it near
one of the poles. While the distance between two adjacent parallels of latitude is constant, the distance between two
meridians becomes progressively smaller as the latitude increases because the meridians converge to the poles. An
area with the infinitesimal dimensions dLat and dLon would appear as an oblong with the dimensions dx and dy on
our globe (Fig. 13-1): 

dx contains the factor cos Lat since the circumference of a parallel of latitude is proportional to cos Lat. The constant
c' is the scale factor of the globe (measured in, e. g., mm/°).

Since we require any rhumb line to appear as a straight line intersecting all meridians at a constant angle, meridians
have to be equally spaced vertical lines on our chart, and any infinitesimal oblong defined by dLat  and dLon must
have  the same aspect  ratio  as on the globe (dy/dx = const.)  at  a  given  latitude  (conformality).  Therefore,  if  we
transfer the oblong defined by dLatand  dLonfrom the globe to our chart, we get the dimensions:

The new constant c is the scale factor of the chart. Now, dx remains constant (parallel meridians), but dy is a function
of the latitude at which our small oblong is located. To obtain the smallest distance from any point with the latitude
LatP to the equator, we integrate:

Y is the distance of the respective parallel of latitude from the equator. In the above equation, angles are given in
circular measure (radians). If we measure angles in degrees, the equation is stated as:

13-1

dx = c ' ⋅d Lon⋅cos Lat

dy = c ' ⋅d Lat

dx = c⋅d Lon

dy = c⋅
d Lat

cos Lat

Y = ∫
0

Y

dy = c⋅∫
0

Lat P

d Lat
cos Lat

= c⋅ ln tan  LatP

2




4 

Y = c⋅ ln tan  Lat P [° ]

2
 45 ° 



The distance of any point from the Greenwich meridian (Lon = 0°) varies proportionally with the longitude of the
point, LonP. X is the distance of the respective meridian from the Greenwich meridian:  

Fig. 13-2 shows an example of the resulting graticule (10° spacing). While meridians of longitude appear as equally
spaced vertical lines, parallels of latitude are horizontal lines drawn farther apart as the latitude increases. Y would be
infinite at 90° latitude.

Mercator charts have the disadvantage that geometric distortions increase as the distance from the equator increases.
The Mercator projection is therefore not suitable for polar regions.  A circle of equal altitude, for example,  would
appear as a distorted ellipse at  higher latitudes.  Areas near  the poles,  e.  g.,  Greenland,  appear much greater  on a
Mercator map than on a globe.

It is often said that a Mercator chart is obtained by projecting each point of the surface of a globe from the center of
the  globe  to  the  inner  surface  of  a  hollow  cylinder  tangent  to  the  globe  at  the  equator.  This  is  only  a  rough
approximation.  As  a  result  of  such  a  (purely  geometrical)  projection,  Y would  be  proportional  to  tan  Lat,  and
conformality would not be achieved.

Plotting Sheets

If we magnify a small part of a Mercator chart, e. g., an area of 30' latitude by 40' longitude, we will notice that the
spacing between the parallels of latitude now seems to be almost constant. An approximated Mercator grid of such a
small area can be constructed by drawing equally spaced horizontal lines, representing the parallels of latitude, and
equally spaced vertical lines, representing the meridians.

The  spacing  of  the  parallels  of  latitude,  ∆y,  defines  the  scale  of  our  chart,  e.  g.,  5mm/nm.  The  spacing  of  the
meridians, Δx, is a function of the mean latitude, LatM :

A sheet of paper with such a simplified Mercator grid is called a small area plotting sheet. It is the commonly used
tool for plotting lines of position and finding their intersection point.
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X = ∫
0

LonP

dx = c⋅ LonP

 x =  y⋅cos LatM Lat M =
Latmin  Latmax

2



If a calculator or trigonometric table is not available, the meridian lines can be constructed with the graphic method
shown in Fig. 13-3:

We take a sheet of blank paper and draw the required number of equally spaced horizontal lines (parallels of latitude).
A spacing of 1 - 10 mm per nautical mile is recommended for most applications. 

Using a protractor, we draw an auxiliary line intersecting the parallels of latitude at an angle numerically equal to the
mean latitude. Then we mark the map scale (defined by the spacing of the parallels) periodically on this line, and
draw the meridian lines through the points thus located. A compass can be used to transfer the map scale from the
chosen meridian to the auxiliary line as demonstrated above.

Universal plotting sheets (for almost all latitudes) with an imprinted graduated circle are available at nautical book
stores. These work in the same way as demonstrated in Fig. 13-3 but do not require a separate protractor to construct
the meridian lines.  Fig. 13-4 shows an example where meridian lines for a mid latitude of N 50° have been added.
The outer (latitude) scale of the circle measures angles from 0° through 90°.

Fig. 13-4    

If we put AP at the center of the circle, we can also plot the azimuth line without a protractor since the inner scale of
the circle measures angles clockwise from 0° (N) through 360°. The azimuth displayed in Fig. 13-4, for example, is
70°.
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Gnomonic Charts

For great circle navigation, the gnomonic projection offers the advantage that any great circle appears as a straight
line. Rhumb lines, however, are curved. A gnomonic chart is obtained by projecting each point on the Earth's surface
from the Earth's center to a plane tangent to the surface.  Since the distance of a projected point from the point of
tangency varies in proportion with the tangent of the angular distance of the original point from the point of tangency,
a gnomonic chart covers less than a hemisphere,  and distortions increase rapidly with increasing distance from the
point  of  tangency.  In  contrast  to  the  Mercator  projection,  the  gnomonic  projection  is  non-conformal  (not  angle-
preserving).

There are three types of gnomonic projection:

If the plane of projection is tangent to the Earth at one of the poles (polar gnomonic chart), the meridians appear as
straight lines radiating from the pole. The parallels of latitude appear as concentric circles. The spacing  of the latter
increases rapidly as the polar distance increases.

If the point of tangency is on the equator (equatorial gnomonic chart), the meridians appear as straight lines parallel
to each other.  Their spacing increases rapidly as their  distance from the point of tangency increases.  The equator
appears as a straight line perpendicular to the meridians. All other parallels of latitude (small circles) are  lines curved
toward the respective pole. Their curvature increases with increasing latitude.

In all other cases (oblique gnomonic chart), the meridians appear as straight lines converging at the elevated pole.

The equator appears as a straight line perpendicular to the central meridian (the meridian going through the point of
tangency). Parallels of latitude are lines curved toward the poles.

Fig. 13-5 shows an example of an oblique gnomonic chart. 

             Fig. 13-5      

A gnomonic chart is a useful graphic tool for long-distance voyage planning. The intended great circle track is plotted
as a straight line from A to B. Obstacles, if existing, become visible at once. The coordinates of the chosen waypoints
(preferably those lying on meridian lines) are then read from the graticule and transferred to a Mercator chart, where
the waypoints are connected by rhumb line tracks.
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Chapter 14

Magnetic Declination

Since the magnetic poles of the Earth do not coincide with the geographic poles and due to other irregularities of the
Earth's magnetic field, the horizontal component of the magnetic field at a given position, called magnetic meridian,
usually forms an angle with the local geographic meridian. This angle is called magnetic declination or, in mariner's
language,  magnetic  variation. Accordingly,  the  needle  of  a  magnetic  compass,  aligning  itself  with  the  local
magnetic meridian, does not exactly indicate the direction of true north (Fig. 14-1).

Magnetic  declination  varies  with the observer's  geographic  position and can exceed  ±30° or even  more  in some
areas.  Knowledge  of  the  local  magnetic  declination  is  therefore  necessary  to  avoid  dangerous  navigation  errors.
Although magnetic declination is often given in the legend of topographic maps, the information may be outdated
because magnetic declination varies with time (up to several degrees per decade). In some places, it may even differ
from official statements due to local distortions of the magnetic field caused by deposits of lava, ferromagnetic ores,
etc.

The time azimuth formula described in chapter  4 is a very useful tool to determine the magnetic  declination at  a
given position. If the observer does not know his exact position, an estimate will suffice in most cases. A sextant is
not required for the simple procedure:

1. We choose a celestial body being low in the sky or on the visible horizon, preferably sun or moon. We measure
the magnetic compass bearing, B, of the center of the body and note the observation time. The vicinity of cars,
steel objects, magnets, DC power cables, etc. has to be avoided since they distort the magnetic field locally.

2. We extract GHA and Dec of the body from the Nautical Almanac or calculate these quantities with a computer
almanac.

3. We calculate the meridian angle, t (or the local hour angle, LHA), from GHA and our longitude (see chapter 4).

4. We calculate the true azimuth, AzN, of the body from Lat, Dec, and t. The time azimuth formula (chapter 4) with
its accompanying rules is particularly suitable for this purpose since it does not require an observed or computed
altitude.

5. Magnetic declination, MD, is obtained by subtracting AzN from the compass bearing, B.

(Add 360° if the angle thus obtained is smaller than –180°. Subtract 360° if the angle is greater than +180°.)

Eastern magnetic  declination  (as demonstrated in  Fig.  14-1) is positive (0°...+180°),  western declination  negative
(0°...–180°).

Having a direction indicated by a magnetic compass (bearing of a landmark, etc.), we have to subtract MG to obtain
the true azimuth, AzN.
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MD = B − AzN



Chapter 15

Ephemerides of the Sun

The Sun is certainly the most frequently observed celestial body. Greenwich hour angle and declination of the Sun as
well as GHAAries and EoT can be calculated using the algorithms listed below [8,17]. These simplified, low-precision

formulas are useful for navigational calculations with spreadsheets or programmable calculators.

First, the time variable, T, has to be calculated from year, month, day, and UT. T is the time of observation, measured
in days and fractions of a day, before or after Jan 1, 2000, 12:00:00 UT:

y is the number of the year (4 digits), m is the number of the month, and d the number of the day in the respective
month. UT is Universal Time in decimal format (e.g., 12h 30m 45s = 12 + 30/60 +45/3600 = 12.5125). For May 17,
1999, 12:30:45 UT, for example, T is -228.978646. The equation is valid from March 1, 1900 through February 28,
2100.

INT(x) is the greatest integer smaller than or equal to x. For example, INT(3.8) = 3, INT(-2.2) = -3. The INT function
is  part  of  many  programming  languages  and  spreadsheet  programs. It  should  be  checked  if  the  INT  function
implemented in the chosen software handles negative values in the same way as shown above. Otherwise, the FLOOR
function might be tried.

It  should  further  be  noted  that  in  many programming  languages  and  spreadsheets,  the  trigonometric  and  inverse
trigonometric functions calculate in radians (1 radian = π/180°).

Mean anomaly of the Sun*:

Mean longitude of the Sun*:

Ecliptic longitude of the Sun*:

Obliquity of the ecliptic:

Declination of the Sun:

Right ascension of the Sun*:

Greenwich Mean Sidereal Time (in degrees)*:
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T = 367⋅ y − INT {1.75⋅[ y + INT ( m + 9
12 ) ] }+ INT (275⋅

m
9 ) + d +

UT [h ]

24
− 730531.5

g[°] = 0.9856003⋅T − 2.472

LE [° ] = LM [° ] + 1.915⋅ sin g + 0.02⋅sin(2⋅g)

LM [° ] = 0.9856474⋅T − 79.540

[° ] = 23.439 − 4⋅T ⋅10−7

Dec[° ] = arcsin ( sin LE⋅ sin ϵ)

RA [° ] = 2⋅arctan
cosϵ⋅sin LE

cos Dec + cos LE

= 2⋅atan2(cos Dec + cos LE , cosϵ⋅sin LE)

GMST [° ] = 100.46062 + 0.98564737⋅T + 15⋅UT [h]



Greenwich hour angle of the Sun*:

Greenwich Apparent Time:

(If GAT > 24h, subtract 24h.)

Equation of time:

EoT [ h] = GAT [h] − UT [h]

(If  EoT > +0.3h, subtract 24h. If  EoT < −0.3h, add 24h.)

Alternative method

We calculate EoT (in degrees) directly from g and LE. In this case, we do not need RA and GMST:

Greenwich hour angle of the Sun*:

*All quantities marked by an asterisk (*) have to be within the range between 0° and 360°. If necessary, add or subtract 360° or
multiples thereof. This can be achieved using  the following algorithm which is particularly useful for programmable calculators:

Semidiameter and Horizontal Parallax:

Due to the  excentricity  of the earth's  orbit,  semidiameter  and horizontal  parallax  of  the  Sun change  periodically
during the course of a year. The SD of the Sun varies inversely with the distance earth-Sun, R:

(1 AU = 149.6 . 106 km)

The mean horizontal parallax of the Sun is approx. 0.15'. The periodic variation of HP is too small to be of practical
significance.

Accuracy:

The maximum error of GHA and Dec is about 0.6' which is accurate enough for marine navigation. Results  have
been cross-checked with Interactive Computer Ephemeris 0.51 (accurate to approx. 0.1'). Between the years 1900 and
2049, the error was smaller than  0.3' in the majority of cases (100 dates chosen at random). EoT was accurate to
approx. 2s. The error of SD is smaller than ±0.1'. By comparison, the maximum error of GHA and Dec of the Sun
extracted from the Nautical Almanac is approx. 0.25' when using the interpolation tables.
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GHA [° ] = GMST [° ]− RA [° ]

GAT [h ] =
GHA[° ]

15
 12 h

R[ AU ] = 1.00014 − 0.01671⋅cos g − 0.00014⋅cos2⋅g

SD [' ] =
16.02

R [AU ]
alternatively: SD [' ] =

16.02
1 − 0.017⋅cos g

GHA [° ] = 15⋅UT [h] + EoT [° ] − 180 °

EoT [° ] = −1.915⋅sin g − 0.02⋅sin(2⋅g) + 2.466⋅sin(2⋅LE) − 0.053⋅sin (4⋅LE)

y = 360⋅[ x
360

− INT(
x

360 ) ] = mod (x , 360)



Chapter 16

Navigational Errors

Altitude errors

Apart  from systematic  errors which can be corrected for the most part  (see chapter  2),  observed altitudes always
contain random errors caused by, e.g.,  heavy seas,  a blurred horizon,  abnormal  refraction,  and the limited optical
resolution of the human eye. Although metal sextants are usually manufactured to a mechanical and optical precision
of ca. 0.1'- 0.3', the standard deviation of altitudes measured with a marine sextant is rather in the magnitude of 1'
under fair working conditions. The standard deviation may increase to several arcminutes due to disturbing factors or
if a bubble sextant or a plastic sextant is used. Altitudes measured with a theodolite are considerably more accurate
(0.1'- 0.2'). For scientific applications, there are precision theodolites which can resolve angles to 1 arcsecond or even
less.

Due  to  the  influence  of  random  observation  errors,  lines  of  position  are  more  or  less  indistinct  and  are  better
considered as bands of position. 

Two  intersecting  bands  of  position  define  an  area  of  position (ellipse  of  uncertainty).  Fig.  16-1 illustrates  the
approximate size and shape of the ellipse of uncertainty for a given pair of position lines. The standard deviations of
the intercepts (±x and ±y, respectively) are indicated by grey lines.

 

The area of position is smallest if the angle between the bands is 90°. The most probable position is at the center of
the area, provided the error distribution is symmetrical. Since position lines are perpendicular to their corresponding
azimuth lines, objects should be chosen whose azimuths differ by approx. 90° for best accuracy. An angle between
30° and 150°, however, is tolerable in most cases. 

When  observing  more  than  two  bodies,  the  azimuths  should  have  a  roughly  symmetrical  distribution  ( bearing
spread).  With  multiple  observations,  the  optimum  horizontal  angle  between  two adjacent  bodies  is  obtained  by
dividing 360° by the number of observed bodies (3 bodies: 120°, 4 bodies: 90°, 5 bodies: 72°, 6 bodies: 60°, etc.). 

A symmetrical bearing spread not only improves geometry but also compensates for systematic errors like, e.g., the
index error. 

Moreover, there is an optimum range of altitudes the navigator should choose to obtain reliable results. Low altitudes
increase the influence of abnormal refraction (random error), whereas high altitudes, corresponding to circles of equal
altitude  with  small  diameters,  increase  geometric  errors  due  to  the  curvature  of   position  lines.  The  generally
recommended range to be used is 20° - 70° but exceptions are possible. 
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Time errors

The time error is as important  as the altitude error since the navigator  usually presets the instrument  to a chosen
altitude and stops the time at the instant  the image of the body or its rim passes the reference line visible in the
telescope.  The accuracy  of time measurement  is usually in the range between a fraction of a second and several
seconds,  depending  on the rate  of change of altitude  and other  factors.  Time error  and altitude  error are  closely
interrelated and can be converted to each other, as shown below (Fig. 16-2).

Due to the Earth‘s rotation, the meridian angle of any celestial body, t, increases by approx. 0.25' per second. The
letter d indicates a small (infinitesimal) change of a quantity (see mathematical literature).

As the meridian angle changes by dt, the GP of the observed body travels the distance dx along a chosen parallel of
latitude:

dx is also the east-west shift of a circle of equal altitude during the time interval dT (tangents shown in Fig. 16-2).
The cosine of Lat is the ratio of the circumference of the parallel of latitude to the circumference of the equator. 

The corresponding altitude change is:

Thus, the rate of change of altitude is:

The altitude changes most rapidly when the observer  is on the equator  and when the azimuth of the body is 90°
(dH/dt positive) or 270° (dH/dt negative). The altitude is constant when the observer is at one of the poles, provided
Dec is constant. dH/dt is zero when the azimuth is 0° or 180° which is the case at meridian transit.

An alternative formula is obtained by differentiation of the altitude with respect to the meridian angle, t  (see altitude
formula, chapter 4):

In view of the above, it  should be clear that  is would not make sense to buy an expensive 1-arcsecond theodolite
when we are not able to determine the instant of observation with the corresponding precision.

A  chronometer  error is a systematic  time error (chapter 17).  It  influences each line of position so that  only the
longitude  of  a  fix  is  affected  whereas  the  obtained  latitude  remains unchanged,  provided  the  declinations of  the
observed bodies do not change. A chronometer being 1 s slow, for example, displaces a fix by 0.25' to the west, a
chronometer  being 1 s fast  displaces  it  by 0.25'  to the east.  If  we know our exact  position,  we can calculate  the
chronometer error from the difference between our true longitude and the longitude found by our observations. If we
do not know our longitude, the approximate chronometer error can be found by lunar observations (chapter 7).
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Ambiguity

Poor  geometry  may  not  only  decrease  accuracy  but  may  even  result  in  an  entirely  wrong  fix.  As the  observed
horizontal  angle (difference  in azimuth) between two objects approaches 180°, the distance between the points of
intersection  of  the  corresponding  circles  of  equal  altitude  becomes  very  small  (at  exactly  180°,  both  circles  are
tangent to each other). Circles of equal altitude with small diameters resulting from high altitudes also contribute to a
short distance between the two intersection points.

A small distance between both points of intersection, however, increases the risk of ambiguity (Fig. 16-3).

Fig. 16-3

In a scenario as described above, there is an increased chance that the assumed position is too far from our actual
position. As shown in Fig. 16-3, this may result in a grossly incorrect fix.

If AP is close enough to the actual position, the fix obtained by plotting the LoP's (tangents) will be almost identical
with the actual  position and is easily improved by iteration if necessary. The accuracy of the fix decreases as the
distance of AP from the actual position becomes greater, particularly if AP approaches the great circle going through
GP1 and GP2.

If AP is exactly on the great  circle  going through GP1 and GP2, i.e.,  equidistant  from the actual  position and the
second point of intersection, the horizontal angle between GP1 and GP2, as seen from AP, will be 180°. In this case,
the two LoP's obtained with the intercept method are parallel to each other or even merge with each other, and no fix
can be found. 

If  AP is  beyond  the  great  circle  going  through  GP1 and  GP2,  a  fix  more  or  less  close  to  the  second  point  of
intersection is obtained.  Fig.  16-3 shows such an extremely inconspicuous (but rather  unlikely)  constellation.  The
intercept method can not detect which of both theoretically possible positions is the true one. 

Iterative application of the intercept method can only improve the fix if the initial AP is closer to the actual position
than to the second point of intersection. Otherwise, an "improved" wrong position will be obtained. 

Each  navigational  scenario  should  be  evaluated  critically  before  deciding  if  a  fix  is  plausible  or  not.  The
distance from AP to the observer's actual position has to be considerably smaller than the distance between
actual  position and second point of  intersection.  This is usually the case  when the above recommendations
regarding altitude and horizontal angle are observed.

Evaluating and improving observation results with robust statistics

As described earlier, the precision of a fix can be improved through multiple observations. In this case, the method
chosen for averaging is critical  since an asymmetric  error distribution and/or outliers may distort the result.  Using
robust statistics [23], we can reduce the influence of these error sources in a rather simple way. To apply robust
statistics to a series of n measured values, we first have to find their  median. For this purpose, we order the values
from smallest to greatest:
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If n is an odd number, the median of the data set is identical with the value at the center of the ordered data series:

If  n  is  an  even number,  there  are  two values  at  the  center  of  the  data  series,  and the  median  is  defined  as  the
arithmetic mean of these:

Note that the median is not part of the original data series in the latter case.

Let us assume we have obtained n fixes through multiple observations from the same position (!), as shown in the
following table (n=7):

Latitude Longitude

Fix 1 35° 15.7' 17° 35.2'

Fix 2 35° 31.0' 17° 36.1'

Fix 3 35° 13.2' 17° 33.6'

Fix 4 35° 11.9' 17° 31.9'

Fix 5 35° 19.1' 17° 32.8'

Fix 6 35° 15.1' 17° 32.2'

Fix 7 35° 11.6' 17° 34.7'

 Table 16-1

The medians of latitude and longitude, respectively, are marked by ellipses. Thus, the coordinates of our improved
position are N35°15.1' and E17°33.6'. Fig. 16-4 shows how this configuration would look on a plotting sheet.

Fig. 16-4

The green square indicates the median position, the blue triangle the (arithmetic) mean position. The position in the
upper  right  corner  (Fix  2)  is  possibly  an outlier.  It  is  easy to  see  how the  potential  outlier  influences  the  mean
position.

With robust statistics, we can also evaluate the precision of our observations and identify outliers (if any). For this
purpose, we find the first quartile, Q1, and the third quartile, Q3, of all values.

Broadly speaking, Q1 is the median of the lower data half, and Q3 is the median of the upper data half. Thus,
Q1 and Q3 are easily found when we have an even number of values. For example the first quartile of the value series
{1, 2, 5, 8, 9, 15} (n=6) is 2, the median of the series {1, 2, 5}, and the third quartile is 9, the median of the series {8,
9, 15}. Accordingly, the first quartile of the series {1, 2, 5, 8, 9, 15, 20, 25} (n=8) is 3.5, and the third quartile is 17.5.
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Unfortunately, things get more complicated when we have an odd total number of values. In the latter case one finds
various definitions of quartiles in the literature.  These yield different results and obviously neither statisticians nor
developers of mathematical software agree which one of them represents the value distribution in the best way.

Here are four simple methods for finding the quartiles of a series with an odd number of values:

The 1st method excludes the overall median, M, when finding the median of each data half. For example, the median
of the ordered value series {1, 2, 5, 8, 9, 15, 17} is 8 (n = 7). Thus, Q1exc is 2, the median of the series {1, 2, 5}.
Accordingly, Q3exc is 15, the median of the series {9, 15, 17}.

The 2nd method includes the overall median when finding the quartiles. Accordingly, with the same data set, Q1 inc is
3.5, the median of the series {1, 2, 5, 8}, and Q3inc is 12, the median of the series {8, 9, 15, 17}.

The 3rd method combines the two described  above by calculating the arithmetic  means of the quartiles  obtained
therewith:

With the 3rd method, we obtain Q1mean = 2.25 and Q3mean = 13.5 .

The 4th method (″CDF″ method) is another compromise between the first two methods. First, we create two data
halves which in turn have to include an odd number of values each. This is achieved by either including or excluding
the median. M is included if n = 4k+1 whereas M is excluded if n = 4k+3 (k = 1, 2, 3, 4, 5 …). Q1 is the central value
of the lower data half and Q3 the central value of the upper data half thus obtained [24]. With the above example (7 =
4k+3), the results would be Q1 = 2 and Q3 = 15. One advantage of the CDF method is that Q1 and Q3 are always
elements of the original data set.

It is more or less a matter of personal preference to decide which of the above methods should be applied in case of
an odd number of observations. For our purposes any of them will suffice. Methods 3 and 4 are preferred since they
give a more accurate representation of a value distribution, particularly when only few values are available.

In robust statistics, the quality of our observation data is indicated by the  interquartile range,  IQR, which is the
difference between first and third quartile (ignoring the method used to find both values).

Of course, the interquartile range, too, is method-dependent since Q1 exc and Q3exc tend to be farther apart than Q1 inc

and Q3inc.  As we increase  the  number  of  observations,  the  differences  between  the  above  methods  will  become
smaller and approx. 50% of the observed values will be in the interval between Q1 and Q3 while approx. 25% will be
smaller than Q1 and approx. 25% greater than Q3.

With a five-number summary consisting of the smallest value (MIN), Q1, M, Q3, and the greatest value (MAX), we
are able to create a box plot, also known as box-and-whisker plot. The latter is a simplified graphic representation of
the value distribution.  Fig. 16-5 shows a box plot of the latitude values from  Table 16-1 (only arcminute fraction
shown). The box represents the data range between (and including) Q1 and  Q3. M is marked by a line inside the box.
The ″whiskers″ (also called antennae) attached to the box indicate the smallest and greatest value of the whole data
series.

Fig. 16-5  

In Fig. 16-5, at least one value (MAX) appears to be straying far beyond the others.  By definition, values smaller
than Q1‒1.5‧IQR (″lower fence″) or greater than Q3+1.5‧IQR (″upper fence″) are considered as outliers [23].
Thus, the maximum value in this example is clearly an outlier.
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Fig. 16-6 shows a modified box plot in which outliers - only one in this example - are graphically distinguished from
the rest of the values. The right ″whisker″ in Fig. 16-6 represents the greatest value not being an outlier.

Fig. 16-6 

If MAX were closer to Q3 or farther away than shown here, M would still remain the same. Even the presence of a
greater number of outliers would not change the median as long as their percentage stays below 50%. However, the
usefulness of a data series with such a high proportion of outliers is questionable. Outliers are not removed from the
data set when finding the median!

A box plot* of the longitude values from Table 16-1 does not indicate any outliers (Fig. 16-7).

Fig. 16-7

*The above box plots were created with Gnumeric, an open-source spreadsheet software. The method to calculate Q1 and Q3 is not one of those
shown above which explaines the slightly different results.

In the above example, M is roughly in the middle between Q1 and Q3 which indicates a more or less symmetrical
value distribution within this interval.

If M were closer to Q1 or closer to Q3, we would have a more skewed distribution. In such a case, too, the median
would be much more useful than the arithmetic mean. However, in case of a strongly skewed distribution, the data set
should be critically reviewed in order to find the underlying cause.

For the sake of completeness, it should be mentioned that there is another robust estimator, the trimean, TM, which
is the weighted arithmetic mean of the median and both quartiles:

The trimean is not quite as robust as the median because it only tolerates up to 25% outliers. However, it is still much
better in this respect than the arithmetic mean which tolerates no outliers at all (see Fig 16-4). A similar estimator is
the  interquartile  mean,  IQM, which  is the  arithmetic  mean  of all  values  included  in the interval  [Q1,Q3].  The
interquartile mean is a special case of a  trimmed mean which is obtained by removing a certain proportion of the
highest and lowest values of a data series before calculating the arithmetic mean.

Of course, the navigator is interested to know how many observations are needed to establish a reliable position. This
depends on the precision requirements which in turn depend on our situation.  A skipper sailing in the vicinity of
rocks, shoals, or other obstacles is advised to navigate with the utmost precision whereas he usually does not need to
know his position to the arcminute when he is in the middle of an ocean and far from a frequently used traffic route.

In principle, a single value does not tell us anything about the precision of our observation.  Thus, it is a matter of
confidence in the general circumstances, the condition of the instrument we are using, and our own abilities to decide
if we can trust our observation or not. If we deem a single fix unsafe, we may tentatively add one or two more. If the
resulting group is reasonably tight, the mean or median position should be reliable enough. If we suspect any outliers
to be present, we may wish to increase the number of observations and apply the methods of robust statistics. We
should be aware, however, that even a rudimentary data analysis like the five-number summary cannot reasonably be
done with three or five values but requires a greater number of measurements – the more, the better.  Use critical
judgment.
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Chapter 17

The Marine Chronometer

Mechanical Chronometers

A marine  chronometer  is  a  precise  timepiece  kept  on  board  as  a  portable  time  standard.  In  former  times,  the
chronometer time was usually checked (compared with an optical time signal) shortly before departure. During the
voyage, the chronometer had to be reliable enough to avoid dangerous longitude errors (chapter 16) even after weeks
or months of service. Today, radio time signals, e. g., WWV, can be received around the world, and the chronometer
can be checked as often as deemed necessary during a voyage. Therefore, a quartz watch of good quality is suitable
for most navigational tasks if checked periodically, and the marine chronometer serves more or less as a back-up.

The first mechanical marine chronometer of sufficient precision was built by Harrison in 1736. Due to the exorbitant
price of early chronometers it  took decades until  the marine chronometer  became part  of the standard navigation
equipment. In the meantime, the longitude of a ship was mostly determined by lunar distance (chapter 7).

During the second half of the 20th century quartz chronometers replaced the mechanical ones almost entirely because
they are much more accurate,  cheaper to manufacture,  and almost maintenance-free (apart from the annual battery
change). Today, mechanical chronometers are valuable collector's items since there are very few manufacturers left.

Fig. 7-1 shows  a POLJOT (ПΟЛЁΤ) 6MX, a traditional  chronometer made in Russia.  Note that  the timepiece  is
suspended in gimbals to reduce the influence of ship movements (torque) on the balance wheel.

                     Fig 7-1                         

Usage

Shortly  before  an astronomical  observation,  the  navigator  starts  a  stop-watch  at  a  chosen integer  hour or  minute
displayed by the chronometer and makes a note of the chronometer reading. Also before the observation, the sextant
or theodolite  is set  to  a  chosen altitude  (unless  a  maximum or minimum altitude  is to  be observed).  During the
observation itself, the time is stopped at the instant the observed body makes contact with the horizontal reference
line in the telescope of the instrument. This may be the sea horizon (sextant) or the cross hairs (theodolite). The sum
of the previously noted chronometer  time and the time measured with the stop-watch is the chronometer  time of
observation.

Since there  is no guarantee  that  time signals are  available  at  any time during a voyage,  the  navigator  has to be
familiar with the individual characteristics of the board chronometer.

The chronometer error, CE, is the difference between chronometer time (time displayed by chronometer) and UT
(or UTC) at a given instant.

The  most  important  individual  characteristic  of  a  chronometer  is  the  chronometer  rate,  the  change  of  the
chronometer  error during a chosen time interval.  The  daily rate is measured in seconds per 24 hours.  For better
accuracy, the daily rate is usually obtained by measuring the change of the chronometer error within a 10-day period
and deviding the result by 10. The chronometer rate can be positive (chronometer gaining) or negative (chronometer
losing). Knowing the initial error and daily rate, we can extrapolate the current UT from the chronometer time and
the number of days and hours elapsed since the last chronometer check.
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The correction formula is:                   
UT P = T Chrono−CEinit−(d+

h
24

)⋅DR

UTP Predicted UT
TChrono Chronometer time
CEinit Initial chronometer error
DR Daily rate
d Integer number of days elapsed since initial chronometer check. These are not calendar days but  

days elapsed since the exact moment of chronometer check!
h Additional number of hours elapsed.

The daily rate of a chronometer is not always constant but may be subject to systematic changes. Therefore it should
be measured periodically. At the beginning of the service life, the daily rate of a chronometer changes and finally
approaches  a  more  or  less  constant  value  („running  in“).  Temperature  variations  also  affect  the  daily  rate.  The
temperature coefficient is the change of daily rate caused by a certain temperature variation. Since Chronometers
are temperature-compensated,  the temperature  coefficient  of a mechanical  marine  chronometer  is small,  typically
about ±0.1 s/day per Kelvin. Further, the daily rate exhibits random fluctuations, called daily rate variation,  DRV.
The  latter  is  the  difference  between  the  daily  rates  measured  on  two  consecutive  days  (day  i  and  day  i+1,
respectively).

Variations in daily rate are usually small but should be monitored regularly. A daily rate-variation outside the range
specified  by  the  manufacturer  may  indicate  a  mechanical  problem,  e.  g.,  abnormal  wear.  In  such  a  case,  the
instrument needs overhauling or repair. The standard deviation of a series of n (usually 10) consecutive daily rate
variations may be regarded as a “quality index“, ϵ [22].

The following table shows a series of measurements made with a mechanical chronometer (POLJOT 6MX #22787) at
room temperature.  Like most mechanical  marine chronometers, the 6MX has a half-second beat.  The chronometer
time was compared with UTC (radio-controlled watch, 1-second beat). Therefore, all values have been rounded to the
next half second.

Day CE [s] DR [s]   (1st Diff.) DRV[s]   (2nd Diff.) DRV2 [s2]

0 41

-2

1 39 -1 1

-3

2 36 0.5 0.25

-2.5

3 33.5 -0.5 0.25

-3

4 30.5 0 0

-3

5 27.5 0.5 0.25

-2.5

6 25 -0.5 0.25

-3

7 22 0.5 0.25

-2.5

8 19.5 -0.5 0.25

-3

9 16.5 0 0

-3

10 13.5 0.5 0.25

-2.5

11 11 Sum: 2.75

The mean daily rate of the chronometer (first 10 days) is -2.75 s (specification: ±3.5 s).
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The greatest daily rate variation is -1 s (specification: ±2.3 s). The “quality index“, ϵ, is ±0.52 s (not specified).

Mechanical  chronometers  can  exhibit  a  strange  behavior.  Immediately  after  the  above  chronometer  had  been
overhauled by a watchmaker, the author started recording the error on a daily basis.  Fig. 17-2 shows the error as a
function of time.

Fig. 17-2     

During the first two weeks after the overhaul, the daily rate was approx. +1 s. This was followed by a two-week plateau
during which  the  error remained  almost constant.  Afterwards,  the chronometer  gradually  became slower and after
approx. 60 days, the mean daily rate finally settled at about  –1s per day. A possible explanation would be that a tiny
quantity of oil leaked out of the balance wheel bearing and slowly spread over the axle or even parts of the wheel,
increasing the moment of inertia and thus decreasing the natural frequency  of the mechanical  oscillator.  How this
chronometer will behave in the future remains to be seen.

As a corollary, chronometers, particularly mechanical ones, should be closely monitored and checked against a reliable
standard (time signal, radio-controlled watch) whenever an opportunity arises.

Quartz Chronometers

A quartz-controlled chronometer (Fig. 7-2) is much more reliable than a mechanical one. The specimen shown below
has a certified daily rate of +0.1s. This was confirmed by own measurements (mean DR = +0.09s over a period of 200
days).

Fig. 7-2

Radio-controlled Clocks

Radio-controlled clocks and watches have become very popular and may be used to monitor a chronometer. It should
be kept in mind, however, that most of these clocks are actually quartz-controlled clocks which are synchronized to
UTC through an integrated time signal receiver. In order to reduce power consumption and save batteries, most clocks
are not synchronized continually but once every 24 hours. If the quartz movement is of inferior quality, an error of up
to  several  seconds  can  accumulate  between  two  subsequent  synchronizations.  Such  a  clock  is  of  limited  use  for
measuring a current chronometer error since the exact moment of synchronization is usually not known. If it is used to
measure the daily rate of a chronometer, this should be done at the same time (UTC) of day so that the daily rate of the
quartz movement has no effect on the result. The occasional leap seconds introduced to UTC have to be observed.
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The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in
formats  which  do not  have  any  title  page  as  such,  "Title  Page"  means  the  text  near  the  most
prominent appearance of the work's title, preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here
XYZ  stands  for  a  specific  section  name  mentioned  below,  such  as  "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You  may  copy  and  distribute  the  Document  in  any  medium,  either  commercially  or
noncommercially, provided that this License, the copyright notices, and the license notice saying
this  License  applies  to  the  Document  are  reproduced in  all  copies,  and that  you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If  you  publish  printed  copies  (or  copies  in  media  that  commonly  have  printed  covers)  of  the
Document, numbering more than 100, and the Document's license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies.



The front cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It  is  requested,  but  not  required,  that  you  contact  the  authors  of  the  Document  well  before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2
and 3 above, provided that you release the Modified Version under precisely this License, with the
Modified Version filling the role of the Document, thus licensing distribution and modification of
the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission. 

• B.  List  on  the  Title  Page,  as  authors,  one  or  more  persons  or  entities  responsible  for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement. 

• C.  State  on  the  Title  page  the  name  of  the  publisher  of  the  Modified  Version,  as  the
publisher. 

• D. Preserve all the copyright notices of the Document. 
• E.  Add  an  appropriate  copyright  notice  for  your  modifications  adjacent  to  the  other

copyright notices. 
• F.  Include,  immediately  after  the  copyright  notices,  a  license  notice  giving  the  public

permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below. 

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice. 

• H. Include an unaltered copy of this License. 
• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled "History" in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence. 

• J.  Preserve  the  network  location,  if  any,  given in  the  Document  for  public  access  to  a



Transparent  copy  of  the  Document,  and  likewise  the  network  locations  given  in  the
Document for previous versions it  was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four years
before  the  Document itself,  or  if  the original  publisher  of  the version it  refers  to  gives
permission. 

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein. 

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles. 

• M. Delete any section Entitled "Endorsements". Such a section may not be included in the
Modified Version. 

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section. 

• O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one
passage  of  Front-Cover  Text  and  one  of  Back-Cover  Text  may  be  added  by  (or  through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its  license notice,  and that you preserve all  their  Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if known, or else a unique
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In  the  combination,  you  must  combine  any  sections  Entitled  "History"  in  the  various  original
documents,  forming  one  section  Entitled  "History";  likewise  combine  any  sections  Entitled
"Acknowledgements",  and  any  sections  Entitled  "Dedications".  You  must  delete  all  sections
Entitled "Endorsements".



6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that  is  included  in  the  collection,  provided that  you follow the  rules  of  this  License  for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works,  in  or  on a  volume of  a  storage or  distribution  medium, is  called  an  "aggregate"  if  the
copyright resulting from the compilation is not used to limit the legal rights of the compilation's
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed covers that bracket the
whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under  the  terms  of  section  4.  Replacing  Invariant  Sections  with  translations  requires  special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections  in  addition  to  the  original  versions  of  these  Invariant  Sections.  You  may  include  a
translation  of  this  License,  and  all  the  license  notices  in  the  Document,  and  any  Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If  a  section in  the Document is  Entitled "Acknowledgements",  "Dedications",  or "History",  the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates  your  license,  and (b) permanently,  if  the copyright  holder  fails  to  notify you of the
violation by some reasonable means prior to 60 days after the cessation.Moreover, your license
from a particular copyright holder is reinstated permanently if the copyright holder notifies you of
the violation by some reasonable means, this is the first time you have received notice of violation
of this License (for any work) from that copyright holder, and you cure the violation prior to 30
days after your receipt of the notice.



Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License "or any later version" applies to it,  you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does not
specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which
future versions of this License can be used, that proxy's public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that
publishes  copyrightable  works  and also  provides  prominent  facilities  for  anybody to  edit  those
works. A public wiki that anybody can edit is an example of such a server. A "Massive Multiauthor
Collaboration"  (or  "MMC")  contained  in  the  site  means  any  set  of  copyrightable  works  thus
published on the MMC site.

"CC-BY-SA"  means  the  Creative  Commons  Attribution-Share  Alike  3.0  license  published  by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of that license published by that same
organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the
same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

    Copyright (C)  YEAR  YOUR NAME.
    Permission is granted to copy, distribute and/or modify this document
    under the terms of the GNU Free Documentation License, Version 1.3
    or any later version published by the Free Software Foundation;
    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
    A copy of the license is included in the section entitled "GNU
    Free Documentation License".



If  you have Invariant  Sections,  Front-Cover Texts  and Back-Cover  Texts,  replace the "with …
Texts." line with this:

    with the Invariant Sections being LIST THEIR TITLES, with the
    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software. 


