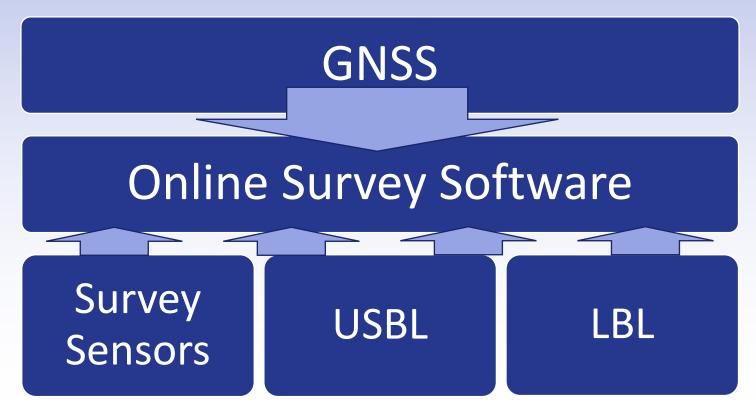


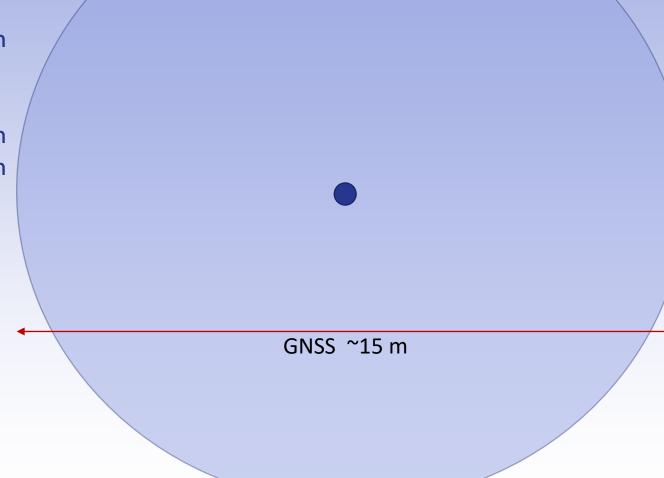
POSITIONING SYSTEMS Eddie Milne


I. GNSS Positioning2. Additional Sensors3. Alternative Positioning4. Bringing it altogether

Importance of GNSS

- Why is GNSS so important?
- In majority of offshore applications it is the starting point for all other sensors. If the starting point is wrong then all other points are wrong

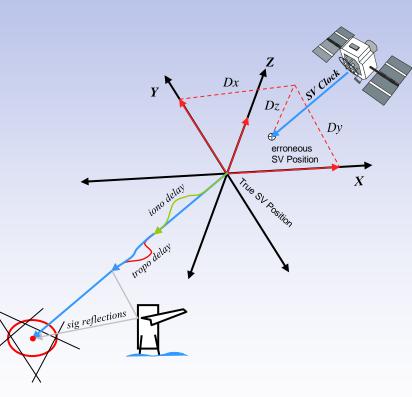
GNSS = GPS 🔤 + Glonass 💳 + Galileo 🄅 + Beidou


000

GNSS Horizontal Accuracies

95% Confidence (2σ):

Main Error Sources:Satellite Orbit±2.5mSatellite Clock±2mIonosphere±5mTroposphere±0.5mReceiver Noise±0.3mMultipath±1m



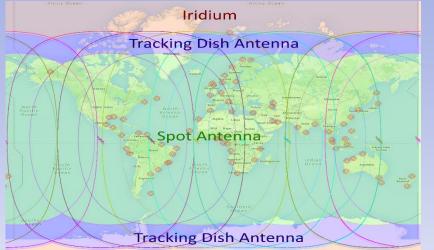
Removing the Errors - PPP

- Apply calculated SV clock error correction to broadcast ephemeris value
- Apply satellite orbit corrections to broadcast orbit position
- Iono error is calculated using dualfrequency mobile GPS hardware
- Tropo delays minimised using model plus residual error is estimated as part of the calculation process
- Measurement noise and multipath minimised using carrier phase observable

GNSS Horizontal Accuracies

Offshore Correction Service	Correction Type	Horizontal Accuracy (95%)	Satellites
Veripos Apex ⁵	PPP	5 cm	GPS, Glonass, Galileo, Beidou, QZSS
Veripos Ultra ²	PPP	10 cm	GPS, Glonass
Veripos Std ²	Differential	l m	GPS, Glonass
CNav C ¹	PPP	10 cm	GPS
CNav C ²	PPP	8 cm	GPS, Glonass
Fugro Starfix G4	PPP	10 cm	GPS, Glonass, Galileo, Beidou,
Fugro Starfix G2+	PPP + IAR	3 cm	GPS, Glonass
Fugro Starfix G2, XP2	PPP	10 cm	GPS, Glonass
Fugro Starfix HP	IAR	10 cm	GPS

Others: Positioneering, Atlas, Various Land Services


GNSS receiver Quality

- Wide range of GNSS receiver quality available
- Consumer Grade to Professional Grade Receivers
- Costs range from £xx to £xxxx
- Offshore operations should utilise Professional Grade receivers because:
 - They have lower receiver noise and greater capability to reject Multipath Errors.
 - They use dual frequency measurements to measure lonospheric delays and are more resilient to interference.
 - They can track multiple constellation to provide more resilience against interference and Constellation issues.

The Hydrographic Society In Scotland

GNSS Practical Considerations

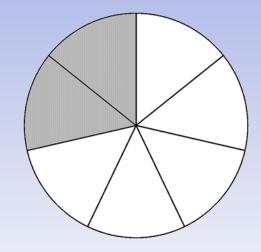
Work Location

Site Conditions

Antenna Placement

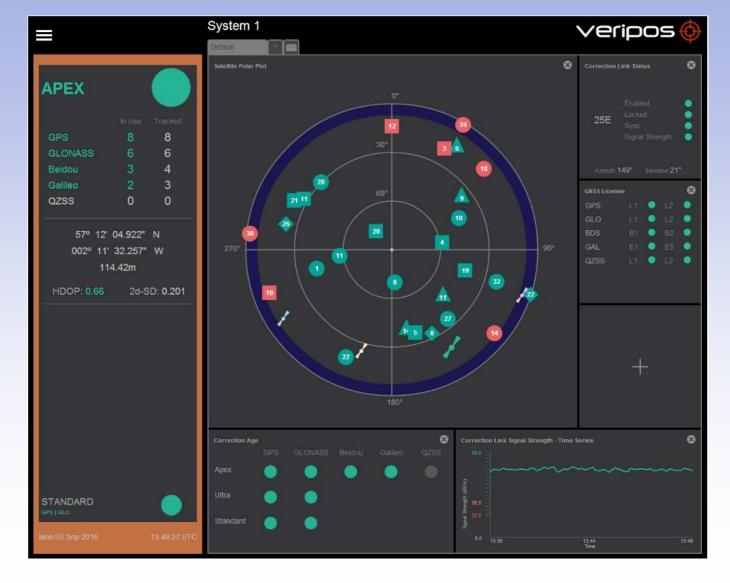
Cable Run

Threats to GNSS


- In-Band Interference
 - Re-radiating GNSS systems
 - GNSS systems, Tracking Dish Systems, Doppler Speed Logs, Heading Sensors
- Out-Band Interference
 - Communications,
 - LRIT, V-SAT, Sat-C, Iridium
 - Microwave data links
 - Radar systems
 - TV antenna amplifiers or transmitters
 - Telemetry Systems (data or video)
- Intentional Interference
 - Spoofing
 - Jamming

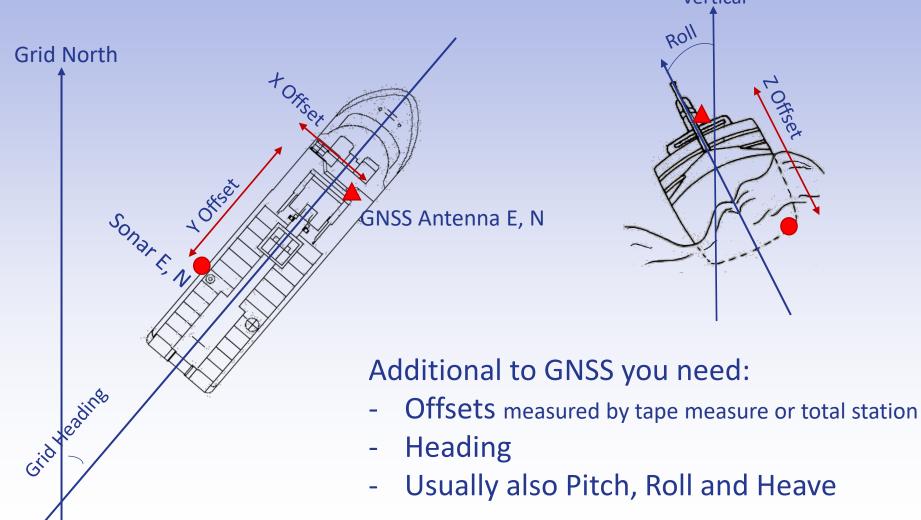
Controlled Reception Pattern Antennas (CRPA)

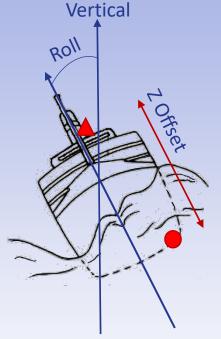
- Controlled Reception Pattern Antennas Mitigate In-Band and Out-Band Interference
- Create nulls in the antenna gain pattern in the direction of jammers
- Providing significant anti-jam protection even in dynamic multi-jammer scenarios



Cobham 20-7009

QC Software


Coordinate Systems and Transformations


- GNSS Coordinate Systems
 - GNSS receivers calculate standalone positions using WGS84 Datum
 - Commercial Augmentation Services generally utilize ITRFyy
 - RTK corrections vary dependent on the Base Station configuration
- Users Coordinate Systems
 - Vary depending on end client and location, E.G. ED50, NAD83
- Utilising wrong coordinate systems can lead to errors in positioning of hundreds of meters.

GNSS alone is not enough

The Hydrographic Society In Scotland

Heading Sensors

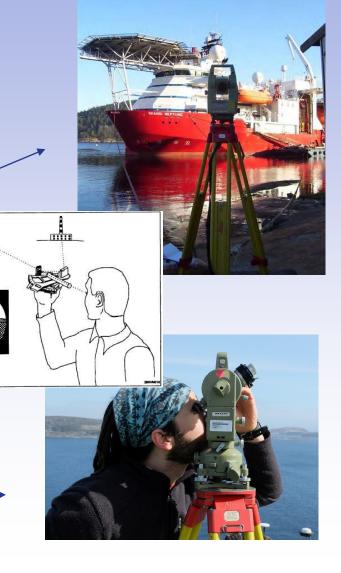
	Technology	Accuracy 2σ	Examples	Remarks
Spinning Mass	Gimballed spinning gyroscope	0.2° static *	TSS Meridian Surveyor	
Gyro		0.4° dynamic		
Fibre Optic Gyro	Laser interferometer measuring	0.2° *	IXSEA Octans, CDL	Also does Pitch,
	Sagnac effect in a fibre coil		TOGS	Roll, Heave
Ring Laser Gyro	Laser resonance in a clockwise and anticlockwise beam	0.3°-0.1° *	CDL Mini RLG, Sonardyne Lodestar, Kearfott T16,T24	Also does Pitch, Roll, Heave
Hemispherical Resonator	Flexural resonance of dome moves with rotation	0.2° *	Sagem BlueNaute	Also does Pitch, Roll, Heave
GNSS Vector Heading	Relative GNSS positioning	0.6° **	Hemisphere V series	OHemisphere
GNSS RTK heading	Carrier Phase count between base and rover	0.1° **	Trimble SPS361, Fugro, Cnav, Veripos	Print (SU MAX

* Depends on latitude

** Depends on baseline length

Heading Sensors Practical Considerations

Aligning the gyro with the local Y-axis


(usually the vessel longitudinal axis)

Alongside

- Dual antenna GNSS RTK heading
- Land surveying vessel bow and stern
- Tape measurement to known quayside heading

Offshore

- Dual antenna GNSS RTK heading
- Sextant measurement to known points e.g. platforms
- Sunshot

Motion Sensors (Pitch, Roll, Heave)

"AHRS" Attitude & Heading Reference System (~0.02° / 5 cm 2σ)

Ixblue Octans

Sonardyne Lodestar

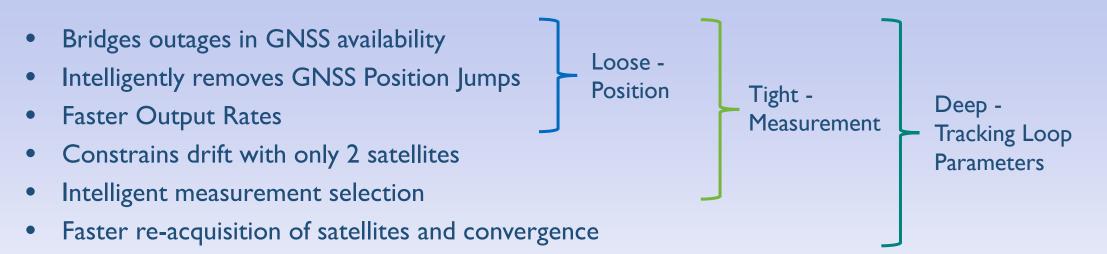
MEMS Pitch, Roll, Heave Sensors (~0.1° / 10 cm 2σ)

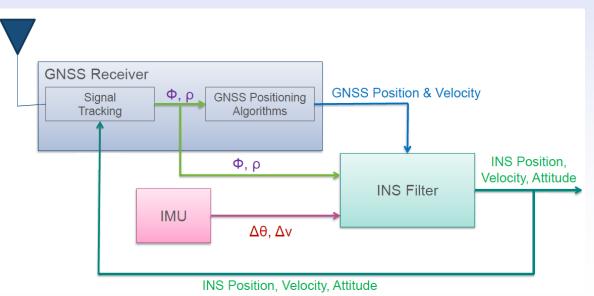
TSS DMS-05 Kongsberg MRU-5

SBG Ekinox

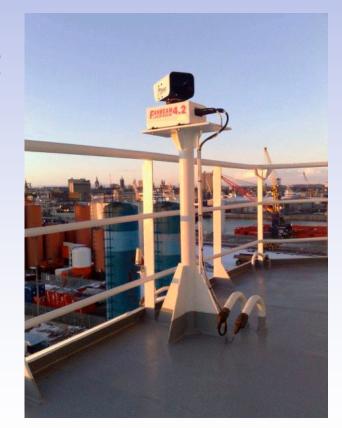
Combined GNSS and IMU Systems

Applanix POS-MV




Coda Octopus F180

GNSS / IMU Integration


Relative Positioning

Applications:

- Rig Positioning alongside a Platform
- Platform Installation
- Seismic Streamer Tailbuoy Positioning
- Dynamic Positioned vessel close to platform

Methods:

- Total Station
- Relative GNSS
- Fanbeam, Radascan

The Hydrographic Society In Scotland

Multi Purpose Nav Software:

- EIVA NaviPac
- QPS Qinsy
- Fugro Starfix
- Others: Hypack, NavView, legacy software Winfrog, Hydropro, 4DNav etc

Putting It All Together: Error Budget

Example at 60° Latitude	Standard Deviation (deg)	Offset (m)	Standard Deviation (m)	Variance (m²)
GPS position			0.05	0.003
Offset measurements			0.10	0.010
TSS Gyro Dynamic error	0.40*	50	0.35	0.123
TSS Gyro Settling error	0.20*	50	0.17	0.029
Gyro Cal error	0.20	50	0.17	0.029
Total	σ	(68% conf)	0.44	0.194
	2σ	(95% conf)	0.88	

* RMS error secant latitude so divided by cos(60)

The Hydrographic Society In Scotland

Multi Purpose Nav Software:

- EIVA NaviPac
- QPS Qinsy
- Fugro Starfix
- Others: Hypack, NavView, legacy software Winfrog, Hydropro, etc

